GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Nature Research  (2)
  • Macmillan Publishers Limited  (1)
Publikationsart
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2016-11-14
    Beschreibung: Assessments of climate sensitivity to projected greenhouse gas concentrations underpin environmental policy decisions, with such assessments often based on model simulations of climate during recent centuries and millennia1, 2, 3. These simulations depend critically on accurate records of past aerosol forcing from global-scale volcanic eruptions, reconstructed from measurements of sulphate deposition in ice cores4, 5, 6. Non-uniform transport and deposition of volcanic fallout mean that multiple records from a wide array of ice cores must be combined to create accurate reconstructions. Here we re-evaluated the record of volcanic sulphate deposition using a much more extensive array of Antarctic ice cores. In our new reconstruction, many additional records have been added and dating of previously published records corrected through precise synchronization to the annually dated West Antarctic Ice Sheet Divide ice core7, improving and extending the record throughout the Common Era. Whereas agreement with existing reconstructions is excellent after 1500, we found a substantially different history of volcanic aerosol deposition before 1500; for example, global aerosol forcing values from some of the largest eruptions (for example, 1257 and 1458) previously were overestimated by 20–30% and others underestimated by 20–50%.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-02-08
    Beschreibung: Reconstructions of the global mean annual temperature evolution during the Holocene yield conflicting results. One temperature reconstruction shows global cooling during the late Holocene. The other reconstruction reveals global warming. Here we show that both a global warming mode and a cooling mode emerge when performing a spatio-temporal analysis of annual temperature variability during the Holocene using data from a transient climate model simulation. The warming mode is most pronounced in the tropics. The simulated cooling mode is determined by changes in the seasonal cycle of Arctic sea-ice that are forced by orbital variations and volcanic eruptions. The warming mode dominates in the mid-Holocene, whereas the cooling mode takes over in the late Holocene. The weighted sum of the two modes yields the simulated global temperature trend evolution. Our findings have strong implications for the interpretation of proxy data and the selection of proxy locations to compute global mean temperatures.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2022-01-31
    Beschreibung: Extratropical volcanic eruptions are commonly thought to be less effective at driving large-scale surface cooling than tropical eruptions. However, recent minor extratropical eruptions have produced a measurable climate impact, and proxy records suggest that the most extreme Northern Hemisphere cold period of the Common Era was initiated by an extratropical eruption in 536 CE. Using ice-core-derived volcanic stratospheric sulfur injections and Northern Hemisphere summer temperature reconstructions from tree rings, we show here that in proportion to their estimated stratospheric sulfur injection, extratropical explosive eruptions since 750 CE have produced stronger hemispheric cooling than tropical eruptions. Stratospheric aerosol simulations demonstrate that for eruptions with a sulfur injection magnitude and height equal to that of the 1991 Mount Pinatubo eruption, extratropical eruptions produce time-integrated radiative forcing anomalies over the Northern Hemisphere extratropics up to 80% greater than tropical eruptions, as decreases in aerosol lifetime are overwhelmed by the enhanced radiative impact associated with the relative confinement of aerosol to a single hemisphere. The model results are consistent with the temperature reconstructions, and elucidate how the radiative forcing produced by extratropical eruptions is strongly dependent on the eruption season and sulfur injection height within the stratosphere.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...