GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Years
  • 1
    Publication Date: 2023-07-10
    Keywords: Antarctica; DEPTH, ice/snow; DRILL; Drilling/drill rig; Elevation of event; Event label; International Polar Year 2007-2008; IPY-4; Latitude of event; Longitude of event; Name; NUS08-2; NUS08-3; NUS08-4; NUS08-5; NUS08-6; Year of eruption
    Type: Dataset
    Format: text/tab-separated-values, 54 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-10
    Keywords: Antarctica; DEPTH, ice/snow; DRILL; Drilling/drill rig; Elevation of event; Event label; International Polar Year 2007-2008; IPY-4; Latitude of event; Longitude of event; Name; NUS07-1; NUS07-2; NUS07-3; NUS07-4; NUS07-5; NUS07-6; NUS07-7; NUS07-8; Year of eruption
    Type: Dataset
    Format: text/tab-separated-values, 104 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-10
    Keywords: Accumulation rate, standard deviation; Accumulation rate ice, water equivalent; Antarctica; DRILL; Drilling/drill rig; Elevation of event; Event label; International Polar Year 2007-2008; IPY-4; Latitude of event; Longitude of event; NUS07-1; NUS07-2; NUS07-3; NUS07-4; NUS07-5; NUS07-6; NUS07-7; NUS07-8; NUS08-2; NUS08-3; NUS08-4; NUS08-5; NUS08-6; Period
    Type: Dataset
    Format: text/tab-separated-values, 90 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Anschütz, Helgard; Sinisalo, A; Isaksson, Elisabeth; McConnell, Joseph R; Hamran, S E; Bisiaux, Marion M; Pasteris, Daniel R; Neumann, T A; Winther, Jan-Gunnar (2011): Variation of accumulation rates over the last eight centuries on the East Antarctic Plateau derived from volcanic signals in ice cores. Journal of Geophysical Research: Atmospheres, 116(D20), D20103, https://doi.org/10.1029/2011JD015753
    Publication Date: 2023-12-13
    Description: Volcanic signatures in ice-core records provide an excellent means to date the cores and obtain information about accumulation rates. From several ice cores it is thus possible to extract a spatio-temporal accumulation pattern. We show records of electrical conductivity and sulfur from 13 firn cores from the Norwegian-USA scientific traverse during the International Polar Year 2007-2009 (IPY) through East Antarctica. Major volcanic eruptions are identified and used to assess century-scale accumulation changes. The largest changes seem to occur in the most recent decades with accumulation over the period 1963-2007/08 being up to 25% different from the long-term record. There is no clear overall trend, some sites show an increase in accumulation over the period 1963 to present while others show a decrease. Almost all of the sites above 3200 m above sea level (asl) suggest a decrease. These sites also show a significantly lower accumulation value than large-scale assessments both for the period 1963 to present and for the long-term mean at the respective drill sites. The spatial accumulation distribution is influenced mainly by elevation and distance to the ocean (continentality), as expected. Ground-penetrating radar data around the drill sites show a spatial variability within 10-20% over several tens of kilometers, indicating that our drill sites are well representative for the area around them. Our results are important for large-scale assessments of Antarctic mass balance and model validation.
    Keywords: International Polar Year (2007-2008); IPY
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-05
    Description: The West Antarctic Ice Sheet (WAIS) Divide deep ice core WD2014 chronology, consisting of ice age, gas age, delta-age and uncertainties therein. The West Antarctic Ice Sheet Divide (WAIS Divide, WD) ice core is a newly drilled, high-accumulation deep ice core that provides Antarctic climate records of the past ~68 ka at unprecedented temporal resolution. The upper 2850 m (back to 31.2 ka BP; Sigl et al., 2015, Sigl et al., 2016) have been dated using annual-layer counting based on counting of annual layers observed in the chemical, dust and electrical conductivity records. The measurements were interpreted manually and with the aid of two automated methods. We validated the chronology by comparing of the cosmogenic isotope records of 10Be from WAIS Divide and 14C for IntCal13. We demonstrated that over the Holocene WD2014 was consistently accurate to better than 0.5% of the age. The chronology for the deep part of the core (below 2850m; 67.8-31.2 ka BP; Buizert et al., 2015) is based on stratigraphic matching to annual-layer-counted Greenland ice cores using globally well-mixed atmospheric methane. We calculate the WD gas age-ice age difference (Delta age) using a combination of firn densification modeling, ice-flow modeling, and a data set of d15N-N2, a proxy for past firn column thickness. The largest Delta age at WD occurs during the Last Glacial Maximum, and is 525 +/- 120 years. We synchronized the WD chronology to a linearly scaled version of the layer-counted Greenland Ice Core Chronology (GICC05), which brings the age of Dansgaard-Oeschger (DO) events into agreement with the U/Th absolutely dated Hulu Cave speleothem record.
    Keywords: Age, difference; Age, difference error; Age, error; annual-layer-counting; Antarctica; Antarctica, west; Calendar age; Calendar age, standard error; chronology; DEPTH, ice/snow; Gas age; Greenland; ice-core; ICEDRILL; Ice drill; Methane; WAIS; WAIS Divide; WDC-06A; West Antarctic Ice Sheet Divide ice core project
    Type: Dataset
    Format: text/tab-separated-values, 392326 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Assessments of climate sensitivity to projected greenhouse gas concentrations underpin environmental policy decisions, with such assessments often based on model simulations of climate during recent centuries and millennia1, 2, 3. These simulations depend critically on accurate records of past aerosol forcing from global-scale volcanic eruptions, reconstructed from measurements of sulphate deposition in ice cores4, 5, 6. Non-uniform transport and deposition of volcanic fallout mean that multiple records from a wide array of ice cores must be combined to create accurate reconstructions. Here we re-evaluated the record of volcanic sulphate deposition using a much more extensive array of Antarctic ice cores. In our new reconstruction, many additional records have been added and dating of previously published records corrected through precise synchronization to the annually dated West Antarctic Ice Sheet Divide ice core7, improving and extending the record throughout the Common Era. Whereas agreement with existing reconstructions is excellent after 1500, we found a substantially different history of volcanic aerosol deposition before 1500; for example, global aerosol forcing values from some of the largest eruptions (for example, 1257 and 1458) previously were overestimated by 20–30% and others underestimated by 20–50%.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-11-14
    Description: Assessments of climate sensitivity to projected greenhouse gas concentrations underpin environmental policy decisions, with such assessments often based on model simulations of climate during recent centuries and millennia1, 2, 3. These simulations depend critically on accurate records of past aerosol forcing from global-scale volcanic eruptions, reconstructed from measurements of sulphate deposition in ice cores4, 5, 6. Non-uniform transport and deposition of volcanic fallout mean that multiple records from a wide array of ice cores must be combined to create accurate reconstructions. Here we re-evaluated the record of volcanic sulphate deposition using a much more extensive array of Antarctic ice cores. In our new reconstruction, many additional records have been added and dating of previously published records corrected through precise synchronization to the annually dated West Antarctic Ice Sheet Divide ice core7, improving and extending the record throughout the Common Era. Whereas agreement with existing reconstructions is excellent after 1500, we found a substantially different history of volcanic aerosol deposition before 1500; for example, global aerosol forcing values from some of the largest eruptions (for example, 1257 and 1458) previously were overestimated by 20–30% and others underestimated by 20–50%.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Atmospheres 119 (2014): 9168–9182, doi:10.1002/2013JD020720.
    Description: The sources and transport pathways of aerosol species in Antarctica remain uncertain, partly due to limited seasonally resolved data from the harsh environment. Here, we examine the seasonal cycles of major ions in three high-accumulation West Antarctic ice cores for new information regarding the origin of aerosol species. A new method for continuous acidity measurement in ice cores is exploited to provide a comprehensive, charge-balance approach to assessing the major non-sea-salt (nss) species. The average nss-anion composition is 41% sulfate (SO42−), 36% nitrate (NO3−), 15% excess-chloride (ExCl−), and 8% methanesulfonic acid (MSA). Approximately 2% of the acid-anion content is neutralized by ammonium (NH4+), and the remainder is balanced by the acidity (Acy ≈ H+ − HCO3−). The annual cycle of NO3− shows a primary peak in summer and a secondary peak in late winter/spring that are consistent with previous air and snow studies in Antarctica. The origin of these peaks remains uncertain, however, and is an area of active research. A high correlation between NH4+ and black carbon (BC) suggests that a major source of NH4+ is midlatitude biomass burning rather than marine biomass decay, as previously assumed. The annual peak in excess chloride (ExCl−) coincides with the late-winter maximum in sea ice extent. Wintertime ExCl− is correlated with offshore sea ice concentrations and inversely correlated with temperature from nearby Byrd station. These observations suggest that the winter peak in ExCl− is an expression of fractionated sea-salt aerosol and that sea ice is therefore a major source of sea-salt aerosol in the region.
    Description: This work was supported by grants from the NSF Antarctic Program (0632031 and 1142166), NSF-MRI (1126217), the NASA Cryosphere Program (NNX10AP09G), and by an award from the Department of Energy Office of Science Graduate Fellowship Program (DOE SCGF) to ASC.
    Description: 2015-01-21
    Keywords: Antarctica ; Ice cores ; Biomass burning ; Sea ice ; Nitrate ; Acidity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...