GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Green chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (299 pages)
    Edition: 1st ed.
    ISBN: 9783030678845
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 660.0286
    Language: English
    Note: Intro -- Contents -- 1 Biomass-Derived Polyurethanes for Sustainable Future -- Abstract -- 1 Introduction -- 1.1 Chemicals for Preparation of Polyurethanes -- 1.2 Importance of Green Chemicals and Synthesis Methods -- 1.3 Characteristics of Biomaterials for Polyurethanes -- 2 Bio-Oils as a Renewable Resource for Polyurethanes -- 2.1 Epoxidation and Ring-Opening Reactions -- 2.2 Hydroformation and Hydrogenation Reactions -- 2.3 Ozonolysis -- 2.4 Thiol-Ene Reaction -- 2.5 Transesterification Reaction -- 3 Terpenes as Green Starting Chemicals for Polyurethanes -- 4 Lignin for Green Polymers -- 5 Conclusion -- References -- 2 Mechanochemistry: A Power Tool for Green Synthesis -- Abstract -- 1 Introduction -- 2 History of Mechanochemistry -- 3 Principles of Mechanochemistry -- 3.1 Mechanisms and Kinetics of Mechanochemistry -- 3.2 Effects of Reaction Parameters -- 4 Mechanochemical Synthesis of Materials -- 4.1 Mechanochemical Synthesis of Co-crystals -- 4.2 Mechanochemistry in Inorganic Synthesis -- 4.3 Mechanochemistry in Organic Synthesis -- 4.4 Mechanochemistry in Metal-Organic Frameworks (MOFs) -- 4.5 Mechanochemistry in Porous Organic Materials (POMs) -- 4.6 Mechanochemical Synthesis of Polymers -- 5 Conclusions -- References -- 3 Future Trends in Green Synthesis -- Abstract -- 1 Introduction -- 2 Green Chemistry Metrics -- 2.1 Atom Economy (AE) -- 2.2 Environmental Factor (E Factor) -- 2.3 Process Mass Intensity (PMI) -- 2.4 Reaction Mass Efficiency (RME) -- 3 Application of Green Concept in Synthesis -- 3.1 Solvent-Based Organic Synthesis -- 3.2 Aqueous Medium -- 3.2.1 Micellar Media -- 3.2.2 Different Non-Aqueous Media -- Ionic Liquids -- Fluorous Media -- Supercritical Fluid -- Solvent-Free Synthesis -- 4 Future Trends -- References -- 4 Plant-Mediated Green Synthesis of Nanoparticles -- Abstract -- 1 Introduction. , 2 Methods for Metallic Nanoparticle Biosynthesis -- 3 Green Biosynthesis of Metallic NPs -- 3.1 Gold Nanoparticles -- 3.2 Platinum Nanoparticles -- 3.3 Silver Nanoparticles -- 3.4 Zinc Oxide Nanoparticles -- 3.5 Titanium Dioxide Nanoparticles -- 4 Different Parts Used for the Synthesis of Metallic Nanoparticles -- 4.1 Fruit -- 4.2 Stem -- 4.3 Seeds -- 4.4 Flowers -- 4.5 Leaves -- 5 Conclusions -- References -- 5 Green Synthesis of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- Abstract -- 1 Introduction -- 2 Advantages of Green Synthesis Methods -- 3 Green Synthesis Methods for Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 3.1 Biological Methods -- 3.1.1 Using Microorganism -- Microorganisms as Reactant -- Microorganism as Template -- 3.1.2 Using Plant -- Plant as Reactant -- Plant as Template -- 3.1.3 Using Other Green Templates -- 3.2 Physical and Chemical Methods -- 3.2.1 Green Techniques -- 3.2.2 Green Reagents -- 3.2.3 Green Solvents -- 4 Growth Mechanism of Metal and Metal Oxide HSNs -- 4.1 Biological Method -- 4.1.1 Biomolecules as Reagents -- 4.1.2 Biomolecules as Templates -- 4.2 Physical and Chemical Methods -- 5 Applications of Hierarchically Structured Metal and Metal Oxide Nanomaterials -- 5.1 Biomedical Application -- 5.2 Environmental Remediation -- 5.2.1 Wastewater Treatment -- 5.2.2 Energy Storage -- 5.2.3 Sensing -- 6 Present Challenges and Future Prospect -- Acknowledgements -- References -- 6 Bioprivileged Molecules -- Abstract -- 1 Introduction -- 2 Four Carbon 1,4-Diacids -- 2.1 Succinic Acid -- 2.2 Fumaric Acid -- 2.3 Malic Acid -- 3 Furan 2,5-Dicarboxylic Acid (FDCA) -- 4 3-Hydroxypropionic Acid (3-HPA) -- 5 Glucaric Acid -- 6 Glycerol -- 7 Aspartic Acid -- 8 Itaconic Acid -- 9 3-Hydroxybutyrolactone -- 10 Sorbitol -- 11 Xylitol -- 12 Glutamic Acid -- 13 Levulinic Acid. , 14 Emerging Molecules -- 15 Conclusion -- References -- 7 Membrane Reactors for Green Synthesis -- Abstract -- 1 Introduction -- 2 Chemical Reaction Enzymatic MR Using Supercritical CO2-IL -- 2.1 Ionic Liquid Media Effect on Free CLAB -- 2.2 Butyl Propionate Synthesis Using Active Membranes SC-CO2 and SC-CO2/IL -- 2.3 Butyl Propionate Synthesis Using Active Membranes in Hexane/IL -- 3 Mixed Ionic Electronic MR -- 3.1 Methane Flow Rate and Concentration Effects on Side II of Membrane -- 3.2 Steam Flow Effect on Side I of Membrane -- 3.3 Temperature Effect -- 4 Green Synthesis of Methanol in a Membrane Reactor -- 5 Green Fuel Energy -- 5.1 Green H2 Energy -- 5.2 Biofuel Energy -- 5.3 Green Fuel Additive -- 6 Biocatalyst Membrane Reactors -- 7 Photocatalytic Membrane Reactors -- 8 Conclusions -- References -- 8 Application of Membrane in Reaction Engineering for Green Synthesis -- Abstract -- 1 Introduction -- 2 Applications of Membrane Reactors in Reaction Engineering -- 2.1 Syngas Production -- 2.2 Hydrogen Production -- 2.3 CO2 Thermal Decomposition -- 2.4 Higher Hydrocarbon Production -- 2.5 Methane Production -- 2.6 Ammonia Production -- 3 Environmental Impacts -- 4 Conclusions and Future Recommendations -- Acknowledgements -- References -- 9 Photo-Enzymatic Green Synthesis: The Potential of Combining Photo-Catalysis and Enzymes -- Abstract -- 1 Introduction -- 2 Principle -- 3 Enzymes Involved in Light-Driven Catalysis -- 3.1 Heme-Containing Enzymes -- 3.1.1 Cytochrome P450 -- 3.1.2 Peroxidases -- 3.2 Flavin-Based Enzyme -- 3.2.1 Baeyer-Villiger Monooxygenases -- 3.2.2 Old Yellow Enzymes -- 3.3 Metal Cluster-Centered Enzyme -- 3.3.1 Hydrogenases -- 3.3.2 Carbon Monoxide Dehydrogenases -- 4 Nanoparticle-Based Activation of Enzyme -- 5 Applications in Photo-Biocatalysis -- 5.1 Isolated Enzymes/Cell Lysates -- 6 Summary and Future Scope -- References. , 10 Biomass-Derived Carbons and Their Energy Applications -- Abstract -- 1 Introduction -- 2 Types of Biomass Materials -- 2.1 Plant-Based Carbons -- 2.2 Fruit-Based Carbons -- 2.3 Animal-Based Carbons -- 2.4 Microorganism-Based Carbons -- 3 Activation of Biomass-Derived Carbons -- 3.1 Activation of Carbons -- 3.1.1 Chemical Activation of Carbons -- 3.1.2 Carbon Activation Through Physical Method -- 3.1.3 Self-activation of Carbons -- 3.2 Pyrolysis Techniques -- 3.2.1 Effect of Temperature -- 3.2.2 Effect of Residence Time -- 3.2.3 Heating Rate Effect -- 3.2.4 Size of the Particle -- 3.3 Microwave-Assisted Technique -- 3.4 Carbonization by Hydrothermal -- 3.5 Ionothermal Carbonization -- 3.6 Template Method -- 4 Energy Storage Applications of Biomass Carbons -- 4.1 Supercapacitors -- 4.2 Li/Na-Ion Batteries -- 5 Conclusion -- Acknowledgements -- References -- 11 Green Synthesis of Nanomaterials via Electrochemical Method -- Abstract -- 1 Introduction -- 2 Green Synthesis -- 2.1 Application of Biology in Green Synthesis -- 2.2 Green Synthesis Based on the Application of Solvent -- 3 Computational Data and Analysis -- 4 Electrochemical Method -- 5 Electrodeposition Method -- 5.1 Experimental Setup for Electrodeposition -- 6 Research Work: Using Green Electrochemical Methods for Nanomaterials Synthesis -- 7 Conclusion -- References -- 12 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridine Class of Bio-heterocycles: Green Avenues and Sustainable Developments -- Abstract -- 1 Introduction -- 2 Microwave-Assisted Synthesis of 2-arylimidazo[1,2-a]pyridines [Abbreviated as 2-Aryl-IPs]. -- 2.1 Synthesis of Fused Bicyclic Heteroaryl Boronates and Imidazopyridine-Quinazoline Hybrids Under MW-irradiations -- 2.2 MW-Irradiated Synthesis of IPs Using Multi-Component Strategy Under Neat Conditions. , 2.3 One-Pot, Three-Component Synthesis of 2-Phenyl-H-Imidazo[1,2-α]pyridine Under MW-Irradiations -- 2.4 Microwave-Assisted Amine-Triggered Benzannulation Strategy for the Preparation of 2,8-Diaryl-6-Aminoimidazo-[1,2-a]pyridines -- 2.5 MW-Assisted NaHCO3-catalyzed Synthesis of Imidazo[1,2-a]pyridines in PEG400 Media and Its Practical Application in the Synthesis of 2,3-Diaryl-IP Class of Bio-Heterocycles -- 2.6 MW-Irradiated, Ligand-Free, Palladium-Catalyzed, One-Pot 3-component Reaction for an Efficient Preparation of 2,3-Diarylimidazo[1,2-a]pyridines -- 2.7 MW-Assisted Water-PEG400-mediated Synthesis of 2-Phenyl-IP via Multi-Component Reaction (MCR) -- 2.8 Microwave-Irradiated Synthesis of Imidazo[1,2-a]pyridines Under Neat, Catalyst-Free Conditions -- 2.9 Green Synthesis of Imidazo[1,2-a]pyridines in H2O -- 2.10 Microwave-Assisted Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]Pyridines -- 2.11 Microwave-Assisted Nano SiO2 Neat Synthesis of Substituted 2-Arylimidazo[1,2-a]pyridines -- 2.12 Microwave-Assisted NaHCO3-Catalyzed Synthesis of 2-phenyl-IPs -- 3 Microwave-Assisted Synthesis of 3-amino-2-arylimidazo[1,2-a]pyridines [3-amino-2-aryl-IPs] -- 3.1 Microwave-Irradiated Synthesis of 3-aminoimidazo[1,2-a]pyridines via Fluorous Multi-component Pathway -- 3.2 MW-Irradiated Synthetic Protocol for 3-aminoimidazo[1,2-a]pyridines via MCR Pathway -- 3.3 MW-Assisted Sequential Ugi/Strecker Reactions Involving 3-Center-4-Component and 3-Center-5-Component MCR Strategy -- 3.4 One-Pot, 4-component Cyclization/Suzuki Coupling Leading to the Rapid Formation of 2,6-Disubstituted-3-Amino-IPs Under Microwave Irradiations -- 3.5 ZnCl2-catalyzed MCR of 3-aminoimidazo[1,2-a]pyridines Using MW Conditions -- 3.6 Microwave-Promoted Preparation of N-(3-arylmethyl-2-oxo-2,3-dihydroimidazo[1,2-a]pyridin-3-Yl)Benzamides. , 3.7 MW-Assisted Multi-component Neat Synthesis of Benzimidazolyl-Imidazo[1,2-a]pyridines.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Photocatalysis. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (277 pages)
    Edition: 1st ed.
    ISBN: 9783030126193
    Series Statement: Environmental Chemistry for a Sustainable World Series ; v.30
    DDC: 541.395
    Language: English
    Note: Intro -- Preface -- Contents -- Contributors -- Chapter 1: Role of Nano-photocatalysis in Heavy Metal Detoxification -- 1.1 Introduction -- 1.2 Heavy Metals and Their Toxicological Effects -- 1.2.1 Cadmium -- 1.2.2 Chromium -- 1.2.3 Copper -- 1.2.4 Lead -- 1.2.5 Mercury -- 1.2.6 Nickel -- 1.2.7 Zinc -- 1.3 Overview of Photocatalysis -- 1.4 Mechanism of Photocatalysis -- 1.5 Types of Photocatalysis -- 1.5.1 Homogeneous Photocatalysis -- 1.5.2 Heterogeneous Photocatalysis -- 1.6 Overview and Mechanism of Nano-photocatalysis -- 1.7 Photocatalytic Nanoparticle Synthesis -- 1.7.1 Organic Synthesis -- 1.7.1.1 Plant Extracts Aqueous Solutions -- 1.7.1.2 Microorganisms -- 1.7.2 Chemical Synthesis -- 1.7.2.1 Sol-Gel Method -- 1.7.2.2 Hydrothermal Method -- 1.7.2.3 Polyol Synthesis -- 1.7.2.4 Precipitation Method -- 1.7.3 Physical Synthesis -- 1.7.3.1 Ball Milling -- 1.7.3.2 Melt Mixing -- 1.7.3.3 Physical Vapour Deposition (PVD) -- 1.7.3.4 Laser Ablation -- 1.7.3.5 Sputter Deposition -- 1.8 Mode of Operation on Nano-photocatalysis -- 1.9 Parameters Affecting the Photocatalytic Efficiency -- 1.9.1 Effect of pH of the Reaction Solution -- 1.9.2 Effect of Photocatalyst Concentration -- 1.9.3 Effect of Substrate Adsorption -- 1.9.4 Effect of Dissolved Oxygen -- 1.10 Application -- 1.10.1 Chromium -- 1.10.1.1 pH -- 1.10.1.2 Light Intensity -- 1.10.1.3 Photocatalyst Dosage -- 1.10.1.4 Presence of Organic Compounds -- 1.10.2 Mercury -- 1.10.3 Arsenic -- 1.10.4 Uranium -- 1.11 Disadvantages of Photocatalysis -- 1.12 Photocatalyst Modifications -- 1.12.1 Dye Sensitization -- 1.12.2 Ion Doping -- 1.12.3 Composite Semiconductor -- 1.13 Conclusion -- References -- Chapter 2: Solar Photocatalysis Applications to Antibiotic Degradation in Aquatic Systems -- 2.1 Introduction -- 2.2 Solar Photocatalysis Process. , 2.3 Solar Photocatalysis Treatment for Antibiotic Degradation -- 2.3.1 Trimethoprim -- 2.3.2 Sulfamethoxazole -- 2.3.3 Erythromycin -- 2.3.4 Ciprofloxacin -- 2.4 Conclusions -- References -- Chapter 3: Biomass-Based Photocatalysts for Environmental Applications -- 3.1 Introduction -- 3.2 Background of Biomass-Derived Carbon -- 3.2.1 Biochar -- 3.2.2 Activated Carbon (AC) -- 3.3 Synthesis Methods of Biomass-Derived Carbon -- 3.3.1 Pyrolysis -- 3.3.2 Hydrothermal Carbonization -- 3.3.3 Physical and Chemical Activation -- 3.4 Photocatalysts and Photocatalysis Reactions -- 3.5 Functionalized AC and Applications -- 3.5.1 Types of Functionalized AC -- 3.5.2 Functionalized AC Photocatalysts and Its Application -- 3.6 Future Challenges and Conclusions -- References -- Chapter 4: Application of Bismuth-Based Photocatalysts in Environmental Protection -- 4.1 Introduction -- 4.2 Photocatalytic Oxidation of Pharmaceuticals in Water -- 4.2.1 Tetracycline -- 4.2.2 Ciprofloxacin and Other Antibiotics -- 4.2.3 Carbamazepine -- 4.2.4 Ibuprofen and Diclofenac -- 4.2.5 Other Pharmaceuticals -- 4.3 Photocatalytic Oxidation of Industrial Micropollutants -- 4.3.1 Bisphenol A -- 4.3.2 Oxidation of Other Industrial Pollutants -- 4.4 Oxidation of the Indoor Air Pollutant NOx -- 4.5 Photocatalytic Reduction of Pollutants in Water and Air -- 4.5.1 Reduction of Cr(VI) in Water -- 4.5.2 Reduction of CO2 in Air -- 4.6 Water Splitting -- 4.7 Conclusions -- References -- Chapter 5: Phosphors-Based Photocatalysts for Wastewater Treatment -- 5.1 Introduction -- 5.2 Phosphor Materials: A Historical Background -- 5.3 Inorganic Phosphors in Photocatalysis -- 5.3.1 Types of Inorganic Phosphor Materials -- 5.3.2 Down-Conversion Phosphors in Photocatalysis -- 5.3.3 Up-Conversion Phosphors in Photocatalysis -- 5.3.4 Long-Persistent Phosphors in Photocatalysis. , 5.4 Organic Up-Conversion Phosphors in Photocatalysis -- References -- Chapter 6: Nanocarbons-Supported and Polymers-Supported Titanium Dioxide Nanostructures as Efficient Photocatalysts for Remedi... -- 6.1 Introduction -- 6.1.1 Heterogeneous Semiconductor Photocatalysis -- 6.1.2 Potential TiO2-Based Photocatalysts -- 6.1.3 Limitations of the Fine Powder Form of TiO2-Based Photocatalysts -- 6.1.3.1 Comparison of Synthesis Methods -- 6.1.3.2 Improvements in TiO2 Performance by Structural Change, Doping, and Hybridization -- 6.2 TiO2 Photocatalysts with Polymer-Based Hybrid Photocatalysts for Wastewater Treatment -- 6.2.1 Need for Immobilization of TiO2-Based Photocatalysts -- 6.2.1.1 Features of a Stable Substrate, and Available Substrates -- 6.2.1.2 Comparison of Polymeric Supports for Wastewater Treatment -- 6.3 TiO2 Photocatalysts Supported with Nanocarbons for Wastewater Treatment -- 6.3.1 TiO2-Functionalized Nanocarbon-Based Photocatalysts -- 6.3.1.1 Potential Photocatalytic Improvements with Carbon Nanostructures for Wastewater Treatment -- 6.4 Conclusions and Future Outlook -- References -- Chapter 7: Investigation in Sono-photocatalysis Process Using Doped Catalyst and Ferrite Nanoparticles for Wastewater Treatment -- 7.1 Introduction -- 7.2 Dependency of Catalytic Activity -- 7.2.1 Size-Dependent Catalytic Activity -- 7.2.2 Shape-Dependent Catalytic Effect -- 7.2.3 Interparticle Distance-Dependent Catalytic Effect -- 7.2.4 Support Interaction and Charge Transfer-Dependent Reactivity -- 7.3 Type of Nanoparticles -- 7.3.1 Non-metallic Nanoparticles -- 7.3.2 Metallic Nanoparticles -- 7.3.3 Semiconductor Nanoparticles -- 7.3.4 Ceramic Nanoparticles -- 7.3.5 Polymer Nanoparticles -- 7.3.6 Lipid-Based Nanoparticles -- 7.4 Types of Nanoparticles Based on Structure -- 7.5 Synthesis and Applications -- 7.5.1 Discussions -- 7.6 Synergetic Effect. , 7.7 Conclusion and Overview -- References -- Chapter 8: Magnetic-Based Photocatalyst for Antibacterial Application and Catalytic Performance -- 8.1 Introduction -- 8.2 Magnetic-Based Photocatalysts in Inactivation of the Microorganism -- 8.3 Factors Affecting the Photocatalytic Bacterial Inactivation -- 8.3.1 Effect of Magnetic-Based Photocatalyst Concentration and Light Intensity -- 8.3.2 Nature of Microorganism -- 8.3.3 Solution pH of Magnetic-Based Photocatalyst Suspension -- 8.3.4 Initial Bacterial Concentration -- 8.3.5 Physiological State of Bacteria -- 8.4 Proposed Mechanism for Bacteria Disinfection by the Magnetic-Based Photocatalyst -- 8.5 Using Magnetic-Based Catalyst in Photocatalytic Abatement of Organics -- 8.6 Photocatalysis for the Simultaneous Treatment of Bacteria and Organics -- 8.7 Conclusion and Future Prospects -- References -- Chapter 9: Antimicrobial Activities of Photocatalysts for Water Disinfection -- 9.1 Introduction -- 9.2 Mechanisms of Photocatalytic Disinfection -- 9.3 Pure and Modified Photocatalysts -- 9.4 Photocatalytic Films and Biofilms -- 9.5 Photocatalytic Composites and Nanocomposites -- 9.6 Materials with Antimicrobial Activity in the Absence of Light -- 9.7 Case Study: Application of Supported Photocatalysts in Disinfection of Whey-Processing Water -- 9.8 Final Considerations -- References -- Chapter 10: Medicinal Applications of Photocatalysts -- 10.1 Introduction -- 10.1.1 Background -- 10.2 Antifungal Activity -- 10.3 Virucidal Activity -- 10.4 Antimicrobial Activity -- 10.5 Anticancer Activity -- 10.6 Conclusion -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Ion exchange. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (230 pages)
    Edition: 1st ed.
    ISBN: 9783030104306
    DDC: 541.3723
    Language: English
    Note: Intro -- Preface -- Contents -- 1 Green Approach: Microbes for Removal of Dyes and Metals via Ion Binding -- Abstract -- 1.1 Introduction -- 1.2 Pollutants in the Environment -- 1.2.1 Toxic Metals -- 1.2.2 Triphenylmethane Dyes -- 1.3 Bioremediation Approaches in Removing Pollutants -- 1.3.1 Non-microbial Strategies -- 1.3.2 Microbial-Based Strategies -- 1.4 Mechanisms for Removal of Pollutant Ions -- 1.4.1 Mechanisms for Removal of Metal Ions -- 1.4.2 Mechanisms for Removal of Dyes -- 1.5 Innovations in the Removal of Pollutant Ions -- 1.6 Conclusions and Future Prospects -- Acknowledgements -- References -- 2 Removal of Heavy Metal from Wastewater Using Ion Exchange Membranes -- Abstract -- 2.1 Introduction -- 2.2 Heavy Metal -- 2.2.1 Chromium -- 2.2.2 Nickel -- 2.2.3 Copper -- 2.2.4 Zinc -- 2.2.5 Cadmium -- 2.2.6 Mercury -- 2.2.7 Lead -- 2.3 Physical Treatment Methods -- 2.3.1 Ultrafiltration -- 2.3.2 Nanofiltration -- 2.3.3 Reverse Osmosis -- 2.3.4 Forward Osmosis -- 2.3.5 Adsorption -- 2.4 Chemical Treatment Methods -- 2.4.1 Electrodialysis Method -- 2.4.2 Fuel Cell Method -- 2.5 Remaining Challenges and Perspectives -- 2.6 Conclusion -- Acknowledgements -- References -- 3 Separation and Purification of Uncharged Molecules -- Abstract -- 3.1 Introduction -- 3.2 Separation and Purification of Vitamin B12 -- 3.2.1 Downstream Processing of Vitamin B12 for Measurement -- 3.3 Separation and Purification of Haemoglobin -- 3.4 Separation and Purification of Uncharged Dyes -- 3.4.1 Purification and Separation of Dyes -- 3.5 Conclusion -- References -- 4 Aluminosilicate Inorganic Polymers (Geopolymers): Emerging Ion Exchangers for Removal of Metal Ions -- Abstract -- 4.1 Introduction -- 4.2 Methodology and Calculations -- 4.2.1 Terminology: Ion Exchange or Adsorption -- 4.2.2 Evidence for Ion Exchange. , 4.2.3 Modeling of Adsorption of Metal Ions on Geopolymers -- 4.2.4 Geopolymer Preparation -- 4.2.5 Washing of the Geopolymeric Adsorbent -- 4.2.6 Comparison Between Geopolymers and Zeolites -- 4.2.7 Geopolymers as Ion Exchangers -- 4.2.7.1 Geopolymers as Ion Exchangers for Alkali Metal Ions -- 4.2.7.2 Geopolymers as Ion Exchangers for Ammonium Ion -- 4.2.7.3 Geopolymers as Ion Exchangers for Alkaline Earth Metals -- 4.2.7.4 Geopolymers as Ion Exchangers for Heavy Metals -- Metakaolin-Based Geopolymers -- Fly Ash-Based Geopolymers -- Zeolite-Based Geopolymers -- 4.2.7.5 Geopolymers as Ion Exchangers/Adsorbents for Cationic Organic Dyes -- 4.2.8 Comparison of Geopolymers with Zeolites -- 4.2.8.1 Synthesis Conditions -- 4.2.8.2 Crystallinity -- 4.2.8.3 Surface Area and Porosity -- 4.2.8.4 Cation Exchange Capacity -- 4.2.8.5 Selectivity for Metal Ions -- 4.2.8.6 Stability in Acidic Solutions -- 4.2.8.7 Thermal Stability -- 4.2.8.8 Mechanical Strength -- 4.2.8.9 Regeneration -- 4.2.9 Stabilization/Solidification/Encapsulation of Ion Exchangers in Geopolymers -- 4.3 Concluding Remarks -- References -- 5 Microwave-Assisted Hydrothermal Synthesis of Agglomerated Spherical Zirconium Phosphate for Removal of Cs+ and Sr2+ Ions from Aqueous System -- Abstract -- 5.1 Introduction -- 5.2 Materials and Methods -- 5.2.1 Preparation of Agglomerated Spherical Zirconium Phosphate -- 5.2.2 Characterization -- 5.2.3 Ion Exchange Properties -- 5.2.4 Elution Behaviour -- 5.2.5 Distribution Studies -- 5.3 Results and Discussion -- 5.3.1 Fourier-Transform Infrared (FT-IR) Characterization -- 5.3.2 Powder X-ray Diffraction Studies -- 5.3.3 Scanning Electron Microscopy (SEM) and Energy Dispersive (EDS) Characterization -- 5.3.4 Zeta and Surface Area Analysis -- 5.3.5 Ion Exchange Characteristics -- 5.3.6 Mechanism of Sr2+ Interaction with Zirconium Phosphate -- 5.4 Conclusion. , Acknowledgements -- References -- 6 Metal Hexacyanoferrates: Ion Insertion (or Exchange) Capabilities -- Abstract -- 6.1 Introduction -- 6.2 Ion Exchange -- 6.2.1 Ion Exchange in MHCF at Work: Potentiometric Ion Sensors -- 6.2.2 An Ion Exchange-Based Approach for the Recovery of Metal Ions: The Case of Cesium and Thallium -- 6.2.3 Electrochemically Driven Ion Exchange -- 6.2.4 Reversible Ion Insertion in Battery Systems -- 6.3 Conclusion -- References -- 7 Biosorbents and Composite Cation Exchanger for the Treatment of Heavy Metals -- Abstract -- 7.1 Introduction -- 7.2 Agro-Based Biosorbents for Heavy Metal Removal -- 7.3 Biopolymers -- 7.3.1 Functional Groups -- 7.3.2 Cellulose -- 7.3.3 Chitosan -- 7.3.4 Nanofiber Membranes and Packed-Bed Adsorbers -- 7.4 Composite Ion Exchangers -- 7.5 Conclusion and Future Outlook -- References -- 8 Rare Earth Elements-Separation Methods Yesterday and Today -- Abstract -- 8.1 Introduction -- 8.2 Rare Earth Elements -- 8.2.1 General Characteristics -- 8.2.2 The Occurrence of Rare Earth Elements -- 8.2.3 Physicochemical Properties of Rare Earth Elements -- 8.2.4 Application of Rare Earth Metals -- 8.2.5 Production and Consumption of Rare Earth Elements in the World -- 8.3 Rare Earth Element Recovery from Nickel-Metal Hydride Batteries -- 8.4 Rare Earth Element Recovery from Permanent Magnets -- 8.5 Separation of High-Purity Rare Earth Elements -- 8.5.1 Separations of Rare Earth Elements of High Purity Using Cation Exchangers -- 8.5.2 Separations of Rare Earth Elements of High Purity Using Anion Exchangers -- 8.5.3 Separations of Rare Earth Elements of High Purity Using Chelating Ion Exchangers -- 8.6 Current Technologies -- 8.7 Conclusions -- References -- 9 Sequestration of Heavy Metals from Industrial Wastewater Using Composite Ion Exchangers -- Abstract -- 9.1 Introduction -- 9.2 Ion-Exchange Materials. , 9.2.1 Organic Materials -- 9.2.2 Inorganic Materials -- 9.2.3 Composite Materials -- 9.2.3.1 Hybrid Materials -- 9.2.3.2 Nanocomposite -- 9.3 Mechanism of Ion-Exchange Process -- 9.4 Conclusion -- Acknowledgements -- References -- 10 Applications of Organic Ion Exchange Resins in Water Treatment -- Abstract -- 10.1 Introduction -- 10.2 Removal of Heavy Metals -- 10.3 Removal of Organics -- 10.3.1 Natural Organic Matter (NOM) -- 10.3.2 Disinfection by-Products (DBPs) -- 10.3.3 Surfactants -- 10.3.4 Pharmaceuticals -- 10.3.5 Dyes -- 10.3.6 Small Organic Matter -- 10.4 Desalination -- 10.5 Boron Removal -- 10.6 Removal of Anions -- 10.7 Removal of Cations -- 10.7.1 Hardness -- 10.7.2 Ammonium -- 10.8 Conclusions -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Renewable energy sources. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (354 pages)
    Edition: 1st ed.
    ISBN: 9783030728779
    Series Statement: Advances in Science, Technology and Innovation Series
    DDC: 628.532
    Language: English
    Note: Intro -- Contents -- 1 Chemical Valorization of CO2 -- Abstract -- 1 Introduction -- 2 CO2-Derived Fuels and Chemicals -- 2.1 Methane -- 2.2 Methanol -- 2.3 Dimethyl Ether -- 2.4 Formic Acid -- 2.5 Ethanol -- 2.6 CO2-Fischer-Tropsch Liquid Fuels -- 2.7 Carbon Monoxide-Syngas -- 3 CO2 Chemically Derived Materials -- 3.1 Polymers -- 3.2 CO2-Derived Building Materials -- 4 Conclusions -- References -- 2 Progress in Catalysts for CO2 Reforming -- Abstract -- 1 Introduction -- 2 Technologies for Capturing and Storing Carbon Dioxide -- 3 Technologies for Using Carbon Dioxide -- 4 Methane Dry Reforming Process -- 4.1 Progress in Catalysts for Methane Dry Reforming (1928-1989) -- 4.2 Progress in Catalysts for Methane Dry Reforming (1990-1999) -- 4.3 Progress in Catalysts for Methane Dry Reforming (2000-2009) -- 4.4 Progress in Catalysts for Methane Dry Reforming (2010-2019) -- 4.5 Current Status in the Catalysts for Methane Dry Reforming -- 5 Dry Reforming of Other Compounds -- 6 Use of Steam or Oxygen in Dry Reforming of Methane and Other Compounds -- 7 Solid Oxide Fuel Cells Fueled with Biogas -- 8 Commercialization of Dry Reforming Process -- 9 Conclusions -- References -- 3 Fuel Generation from CO2 -- Abstract -- 1 Introduction -- 2 Approaches for Directly Converting CO2 to Fuels -- 2.1 Pure CO2 Decomposition Technology -- 2.2 Reagent-Based CO2 Conversion Technology -- 2.2.1 Dry Deformation of Methane Technology -- 2.2.2 Catalytic Hydrogenation of CO2 -- 3 Biological CO2 Fixation for Fuels -- 3.1 Thermochemical Conversion -- 3.1.1 Torrefaction -- 3.1.2 Pyrolysis -- 3.1.3 Thermochemical Liquefaction -- 3.1.4 Gasification -- 3.1.5 Direct Combustion -- 3.2 Biochemical Conversion -- 3.2.1 Biodiesel -- 3.2.2 Bioethanol -- 3.2.3 Biomethane -- 3.2.4 Biohydrogen -- 3.2.5 Bioelectricity -- 3.2.6 Volatile Organic Compounds. , 4 Conclusion and Future Perspectives -- References -- 4 Thermodynamics of CO2 Conversion -- Abstract -- 1 Introduction -- 2 Carbon Dioxide Capture -- 3 Carbon Dioxide Utilisations -- 4 Thermodynamic Considerations -- 5 Thermodynamics of CO2 -- 5.1 The Thermodynamic Attainable Region (AR) -- 5.2 Using Hess's Law to Transform the Extents to G-H AR @ 25˚C -- 5.3 Increasing Temperature on G-H AR -- 6 Conclusion -- Acknowledgements -- References -- 5 Enzymatic CO2 Conversion -- Abstract -- 1 Introduction -- 1.1 CO2 as a Greenhouse Gas -- 1.2 Carbon Capture, Storage, and Utilization -- 1.3 CO2 as a Chemical Feedstock -- 1.4 CO2 Conversion with Enzymes -- 2 Natural Conversion of CO2 in Cells -- 3 Enzymatic Conversion of CO2 in Cells -- 3.1 Conversion of CO2 by a Single Enzyme (in vitro) -- 3.1.1 Formate Dehydrogenase -- 3.1.2 Carbonic Anhydrase -- 3.1.3 Carbon Monoxide Dehydrogenase -- 3.1.4 Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (RuBisCO) -- 3.2 Conversion of CO2 by a Multi-Enzyme Cascade in vitro -- 3.3 Other Ways (Photocatalytic CO2 Methanation) -- 4 Industrial Applications -- 4.1 Alcohols -- 4.2 Organic Acids -- 4.3 Terpenoids -- 4.4 Fatty Acids -- 4.5 Polyhydroxyalkanoates -- 4.6 Calcium Carbonate -- 5 Summary and Future Prospects -- References -- 6 Electrochemical CO2 Conversion -- Abstract -- 1 Introduction -- 2 Electrochemical CO2 Conversion -- 2.1 Fundamentals of the Process -- 2.2 Variants of Electrochemical Conversion of CO2 -- 2.2.1 Aqueous Electrolytes -- 2.2.2 Non-Aqueous Electrolytes -- 2.2.3 Solid Oxide Electrolytes -- 2.2.4 Molten Salt Electrolytes -- 3 Electrochemical CO2 Conversion from Molten Salts -- 3.1 Present State of Electrochemical Reduction of CO2in Molten Salts for the Production of Solid-Phase Carbonaceous Nanomaterials -- 3.2 Direct Electrochemical Reduction of CO2 in Chloride Melts. , 3.3 Indirect Electrochemical Reduction of CO2 in Molten Salts -- 3.4 The Mechanisms of Electrode Reactions Occurring at the Cathode and Anode -- 3.5 Prospects for CO2 Conversion in Molten Salts -- 4 Conclusions -- References -- 7 Supercritical Carbon Dioxide Mediated Organic Transformations -- Abstract -- 1 Introduction -- 2 Applications of Supercritical Carbon Dioxide -- 2.1 Hydrogenation Reactions -- 2.2 Asymmetric Hydrogenation Reactions -- 2.3 Diels-Alder Reaction -- 2.4 Coupling Reaction -- 2.5 Oxidation Reaction -- 2.6 Baeyer-Villiger Oxidation Reaction -- 2.7 Iodination Reaction -- 2.8 Polymerization Reaction -- 2.9 Carbonylation Reaction -- 2.9.1 Acetalization Reaction -- 2.9.2 Olefin Metathesis Reaction -- 2.9.3 Synthesis of heterocycles -- Synthesis of α-alkylidene Cyclic Carbonates -- Synthesis of 4-Methyleneoxazolidin-2-Ones -- Synthesis of 5-Alkylidene-1, 3-Oxazolidin-2-Ones -- Synthesis of 6-Phenyl-3a, 4-Dihydro-1H-Cyclopenta[C]furan-5(3H)-One -- Synthesis of 3, 4, 5, 6-Tetraethyl-2H-Pyran-2-One -- 3 Conclusions -- Acknowledgements -- References -- 8 Theoretical Approaches to CO2 Transformations -- Abstract -- 1 Carbon Dioxide Properties -- 2 CO2 Transformation as an Undeniable Necessity -- 3 CO2 Activation -- 3.1 Methodologies of CO2 Activation -- 4 Theoretical Insight of CO2 Transformation -- 4.1 The Theoretical Approach in CO2 Conversion to Value-Added Chemicals -- 4.1.1 Carbon Monoxide -- 4.1.2 Methane -- 4.1.3 Methanol -- 4.1.4 Formic Acid -- 4.1.5 Heterocycles -- Cyclic Carbonates -- Cyclic Carbamate -- Quiznazoline-2,4(1H,3H)-Dione -- 4.1.6 Summary and Outlook -- 5 Theoretical Designing of Novel Catalysts Based on DFT Studies -- 5.1 Theoretical Designing: Problems and Opportunities -- 6 Conclusion -- References -- 9 Carbon Dioxide Conversion Methods -- Abstract -- 1 Introduction -- 2 Molecular Structure of CO2. , 3 Thermo-Kinetics of CO2 Conversion -- 4 CO2 Conversion Methods and Products -- 4.1 Fischer-Tropsch Gas-to-Liquid (GTL) -- 4.2 Mineralization -- 4.3 Chemical Looping Dry Reforming -- 4.4 Enzymatic Conversion -- 4.5 Photocatalytic and Photo-Electrochemical Conversion -- 4.6 Thermo-Chemical Conversion -- 4.7 Hydrogenation -- 4.8 Reforming -- 5 Economic Assessment of CO2Alteration to Valuable Products -- 5.1 Syngas -- 5.2 Methanol -- 5.3 Formic Acid -- 5.4 Urea -- 5.5 Dimethyl Carbonate (DMC) -- 6 Conclusions and Future Perspective -- Acknowledgements -- References -- 10 Closing the Carbon Cycle -- Abstract -- 1 Introduction -- 2 Methods to Capture CO2 -- 3 CO2 Capture Technologies -- 4 CO2 Capture from the Air -- 5 Biomass and Waste-Based Chemicals -- 6 Advantages of Biomass-Based Chemicals -- 7 Replacement of Carbon-Based Energy Resources -- 8 Biomass Energy -- 9 Wind Energy -- 10 Solar Energy -- 11 Ocean Energy -- 12 Geothermal Energy -- 13 Hydrothermal Energy -- 14 Conclusions -- References -- 11 Carbon Dioxide Utilization to Energy and Fuel: Hydrothermal CO2 Conversion -- Abstract -- 1 Introduction -- 2 Hydrothermal CO2 Conversion -- 2.1 Metals and Catalysts as Reductant -- 2.2 Organic Wastes as Reductant -- 2.3 Inorganic Wastes as Reductant -- 2.4 Biomass as Reductant -- 3 Conclusion -- References -- 12 Ethylenediamine-Carbonic Anhydrase Complex for CO2 Sequestration -- 1 Introduction -- 2 An Overview of Carbonic Anhydrase (CA) -- 3 Mechanism of Action for Biocarbonate Formation -- 4 Historical Background of Carbonic Anhydrase -- 5 Sources of Carbonic Anhydrase -- 6 Carbonic Anhydrase in Microorganism -- 6.1 Micrococcus Lylae, Micrococcus Luteus, and Pseudomonas Fragi -- 6.2 Bacillus Subtilis and Citrobacter Freundii -- 6.3 Neisseria Gonorrhoeae -- 6.4 Helicobacter Pylori -- 7 Plant Carbonic Anhydrase -- 8 Overview of CO2. , 9 Sources of Carbon Dioxide (CO2) -- 10 Effect of Carbon Dioxide (CO2) -- 11 Carbon Dioxide Capturing -- 12 Carbon Dioxide (CO2) Sequestration -- 13 Carbon Dioxide (CO2) Sequestration by Carbonic Anhydrase -- 14 Separation System for CO2 Sequestration -- 15 Cryogenic Separation -- 16 Membrane Separation -- 17 Absorption -- 18 Adsorption -- 19 Bioreactors for CO2 Sequestration -- 20 Carbonic Anhydrase Immobilization -- 21 Ethylenediamine for Carbon Dioxide (CO2) Capturing -- 22 CO2 Capturing and Sequestration with Ethylenediamine-Carbonic Anhydrase Complex -- 23 CO2 Capturing and Sequestration Design and Optimization: Challenges and Future Prospects -- 24 Conclusion -- References -- 13 Green Pathway of CO2 Capture -- Abstract -- 1 Introduction -- 2 Molecular Structure of Carbon Dioxide -- 3 CO2 Capture System -- 3.1 Post-Combustion System -- 3.2 Pre-Combustion System -- 3.3 Oxy-Fuel Combustion System -- 4 Absorption Technology -- 4.1 Green Absorption with Ionic Liquids -- 4.1.1 Properties and Uses of Ionic Liquids -- 4.1.2 CO2 Solubility in PILs -- 4.1.3 CO2 Absorption in PILs with Carboxylate Anion -- 4.2 Reaction Mechanism Involved in CO2-Absorption -- 5 Adsorption Technology -- 5.1 Organic Adsorbents -- 5.1.1 Activated Charcoal -- 5.1.2 Biochar -- 5.1.3 Metal-Organic Frameworks (MOFs) -- 5.2 Other CO2 Adsorbents -- 5.2.1 Metal Oxide-Based Absorbents -- 5.2.2 Zeolites -- 5.3 Biological Processes of CO2Sequestration -- 5.3.1 Carbon Utilization by Forest and Agricultural Management -- 5.3.2 Ocean Fertilization -- 5.3.3 CO2 Capture by Microalgae -- 5.4 Electrochemical Ways for CO2 Capture -- 6 Conclusion -- References -- 14 Carbon Derivatives from CO2 -- Abstract -- 1 Introduction -- 2 Artificial Photoreduction -- 3 Electrochemical Reduction -- 4 Hydrogenation -- 5 Synthesis of Organic Carbonates -- 6 Reforming. , 7 Photocatalytic Reduction of CO2 with Water.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book focuses on the applications of ion exchange resins in processes.
    Type of Medium: Online Resource
    Pages: 1 online resource (175 pages)
    Edition: 1st ed.
    ISBN: 9781644902219
    Series Statement: Materials Research Foundations Series ; v.137
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Applications of Ion Exchange Resins in Protein Separation and Purification -- 1. Introduction -- 2. Types of ion exchange resins -- 3. Functionalization of ion exchange resin -- 4. Characterization of ion exchange resin -- 4.1 Elemental analysis -- 4.2 FT-IR spectra -- 4.3 Thermogravimetric analysis -- 5. Analysis of variables for protein IEC -- 5.1 Stability and pI of proteins -- 5.2 Effect of the support on the chromatographic separation of proteins -- 5.3 Effect of buffer and mobile phase -- 6. Steps of protein separation by IEC -- 7. Types of protein purified by IEC -- 8. Future prospects of IEC -- Acknowledgments -- References -- 2 -- Applications of Ion Exchange Resins in Vitamins Separation and Purification -- 1. Introduction -- 2. Importance of vitamins -- 3. Categorisation of vitamins -- 3.1 Water soluble vitamins -- 3.2 Fat soluble vitamins -- 4. Origin of vitamins -- 5. Isolation and purgation of vitamin -- 6. Ion-exchange chromatography -- 7. Ion exchange chromatographic isolation and purgation of vitamin K1 -- 8. Ion exchange chromatographic isolation and purgation of vitamin C -- 9. Ion exchange chromatographic isolation and purgation of vitamin B1, vitamin B2 and vitamin B6 -- Conclusion -- References -- 3 -- Application of Ion Exchange Resins in Protein Separation and Purification -- 1. Basic principle of protein separation and purification by chromatographic method -- 2. Chromatographic methods of protein purification -- 2.1 Gel filtration or permeation chromatography -- 2.2 Affinity chromatography -- 2.3 Immuno affinity chromatography -- 2.4 Metal chelate chromatography -- 2.5 Other Chromatographic techniques -- 3. Principle of separation of proteins by ion exchange chromatography -- 4. Strong and weak ion exchange resin -- 5. Choice of buffer. , 6. Experimental procedure of ion exchange resin -- 6.1 Equilibration -- 6.2 Sample Application and Wash -- 6.3 Elution -- 6.4 Regeneration -- 7. Morphology of ion exchange resin -- 7.1 Capacity of ion exchange resin -- 7.2 Stability -- 7.3 Cross linking of resins -- 7.4 Donnan equilibrium -- 8. Parameters for optimisation of ion exchange methods -- 8.1 Resolution -- 8.2 Efficiency -- 8.3 Selectivity -- Summary -- References -- 4 -- Ion Exchange Resins for Selective Separation of Toxic Metals -- 1. Introduction -- 2. Ion exchange resins (IERs) -- 3. Type of IERs -- 4. Synthesis of IERs -- 5. Uses of IERs -- 6. Activity of IERs -- 7. Properties of IERs -- 7.1 IE capacity of resin -- 7.2 Water retention capacity of ion exchange resin -- 7.3 Density of ion exchange resin -- 7.4 Surface area of ion exchange resin -- 7.5 Regeneration of ion exchange resin -- 8. Selectivity of IERs -- 9. Toxic metals -- 10. Selective separation of toxic metals -- 11. Modern ion exchange separation method in industry and its future prospects -- Conclusion -- References -- 5 -- Separation and Purification of Bioactive Molecules by Ion Exchange -- 1. Introduction -- 1.1 Reversed phase chromatography -- 2. Polymeric sorbents for preparative chromatography of biologically active compounds -- 2.1 Designing a biochemical purification -- 3. Ion-exchange separation and purification of polyphenols -- 3.1 Separation of bioactive catechin derivatives by AEC -- 4. Ion-exchange separation and purification of protein -- 5. Use of ion-exchange chromatography for the separation of peptide -- 5.1 Separation of human C-peptide by ion exchange -- 6. Separation of Alkaloids from Chinese Medicines by ion-exchange -- 7. Separation of plasmid DNA using ion-exchange chromatography -- 8. Separation of carbohydrates from seaweed using ion-exchange chromatography -- 9. Future Prospects -- References. , 6 -- Ion Exchange Resins as Carriers for Sustained Drug Release -- 1. Introduction -- 2. Principles of sustained drug release -- 2.1 Evolution of sustained drug delivery systems -- 2.2.1 First-generation delivery systems -- 2.2.2 Second-generation delivery systems -- 2.2.3 Third/ Next generation delivery systems -- 3. Types of sustained drug delivery systems -- 3.1 Diffusion-controlled system -- 3.1.1 Reservoir system -- 3.1.2 Matrix system -- 3.2 Osmotic system -- 3.3 Floating system -- 3.4 Bioadhesive system -- 3.5 Liposome system -- 4. IERs as drug delivery systems -- 4.1 Chemistry of IERs -- 4.2. Complexation of IER and the drug -- 4.2.1 Selection of the drug -- 4.2.2 Purification of resins -- 4.2.3 Drug loading -- 4.2.3.1 Batch method -- 4.2.3.2 Column method -- 4.2.4 Factors affecting drug loading -- 4.2.4.1 Particle size -- 4.2.4.2 Porosity and swelling -- 4.2.4.3 Available capacity -- 4.2.4.4 Acid-base strength -- 4.2.5 Evaluation of drug resinates -- 5. Modified resinates -- 6. Release kinetics of drugs complexed with IERs -- 7. Efficiency of IERs as the delivery mechanism -- 7.1 Oral drugs -- 7.2 Nasal drugs -- 7.3 Ophthalmic drugs -- 7.4 Oro-dispersible films (ODF) -- 7.5 Oral liquid suspensions -- 8. Commercial IERs used in sustained drug delivery -- 8.1 Dowex 50W -- 8.2 Indion 244 -- 8.3 Amberlite IRP-69 -- 9. Future perspectives -- References -- 7 -- Ion Exchange Resins for Clinical Applications -- 1. Introduction -- 2. Application of resins in formulation-related issues -- 2.1 Taste development -- 2.2 Aiding in dissolution -- 2.3 Role as disintegrating agents -- 2.4 Drug stabilization -- 2.5 Water purification for the production of pharmaceuticals -- 2.6 Anti-deliquescence -- 3. Applications in drug release systems -- 3.1 Simple resinates -- 3.2 Microencapsulated resinates -- 3.3 Hollow fiber system -- 3.4 Gastric retentive system. , 3.5 Sigmoidal release system -- 4. Applications in targeted drug delivery -- 4.1 Oral drug delivery -- 4.2 Nasal drug delivery -- 4.3 Transdermal drug delivery -- 4.4 Ophthalmic drug delivery -- 4.5 Application in cancer treatment -- 5. Applications in therapeutics -- 5.1 High cholesterol treatment -- 5.2 Application in treatment of pruritus -- 5.3 Applications in treating of oedema -- 5.4 Application in the treatment of cardiac oedema -- 5.5 Applications as antacids -- 5.6 Treating uremia -- Conclusion -- References -- 8 -- Applications of Ion Exchange Resins in Water Softening -- 1. Introduction -- 2. Water hardness -- 2.1 Salts providing hardness -- 2.2 Negative effect of water hardness -- 3. Ion exchange resins for water softening -- 3.1 Strongly acidic resins -- 3.2 Weakly acidic resins -- 3.3 Polymer-inorganic resins -- 4. Regeneration of ion exchange resins and their fouling -- 5. Ion exchange in a combination with other processes -- 5.1 Ion exchange and ultrasound -- 5.2 Ion exchange and electrodialysis -- Conclusions -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: Perovskite supercapacitors have a promising future in the area of energy storage; due to their superior optoelectronic characteristics, simple device construction and increased efficiency.
    Type of Medium: Online Resource
    Pages: 1 online resource (186 pages)
    Edition: 1st ed.
    ISBN: 9781644902738
    Series Statement: Materials Research Foundations Series ; v.151
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Organic-Inorganic Perovskite Based Solar Cells -- 1. Introduction -- 2. Silicon Solar Cells (SSCs) -- 3. Perovskites-Based Solar Cells (PSCs) -- 3.1 Structure of PSCs -- 3.2 Optoelectronic Properties Of PSCs -- 3.3 Influence of A, B, and X site -- 3.3.1 A-Site -- 3.3.2 B-Site -- 3.3.3 X-Site -- 4. Mixed Concentration of Perovskite Absorbing Layer -- 4.1 A-site -- 4.4 Mixed B-Sites Cations -- 4.5 X-Site -- 5. Requirements for Each Layer -- 5.1 Electron Transport Layer -- 5.1.1 Different ETL Material Used In Perovskite Cells -- 5.2 Hole Transporting Layer -- 5.2.1 Hole Transporting Material (HTM) -- 5.2.2 Inorganic P-type semiconductors as HTMs -- 5.2.3 Organometallic HTMs -- 5.3 Absorbing Layer -- 5.3.1 Preparation Method of The Perovskite Light Absorbing Layer -- 6. Fabrication Techniques -- 6.1 One-Step Deposition -- 6.2 Two-Step Deposition -- 6.3 Vapor Deposition Method -- 6.4 Spin Coating -- 6.4.1 One-Step Spin Coating -- 6.4.2 Two-Step Spin Coating -- 6.5 Thermal Vapor Deposition -- 7. Challenges in Perovskite-Based Solar Cells -- 7.1 Stability Challenges -- 7.2 Thermal Effect -- 7.3 Toxicity -- 7.4 J-V Hysteresis -- 8. Efficiency of Perovskite -- 9. Future Perspectives -- Conclusion -- References -- 2 -- Organometallic Halides-Based Perovskite Solar Cells -- 1. Introduction -- 1.1 Carbon-based energy sources -- 1.2 The global trend toward renewable energy resources -- 1.3 Era of Solar Cell (SCs) technology -- 1.4 Green energy (Carbon free) -- 2. Photovoltaic effect -- 2.1 Discovery of Sir Alexander Edmond Becquerel -- 2.2 Development of solar cells -- 2.3 Generations -- 2.4 Types of 3rd generation of SCs -- 3. Perovskite-based solar cells -- 3.1 Introduction to perovskite compounds -- 3.2 Classification of perovskite -- 3.3 Organometallic halide-based perovskite (OMHP) solar cells. , 3.4 Evolutionary history of perovskite solar cells with their efficiency -- 3.4.1 Open-circuit voltage (OCV) -- 3.4.2 Short-circuit voltage (Jsc) -- 3.4.3 Fill factor (FF) -- 3.5 Crystal structure of organometallic halides-based perovskite solar cells -- 3.6 Behavior of OMHP with different combinations of A, B, and X -- 3.6.1 A-site cations -- 3.6.2 B-site cations -- 3.6.3 X-site anions -- 3.6.3.1 Iodide (I) anion -- 3.6.3.2 Chloride (Cl) anion -- 3.6.3.3 Bromide (Br) anion -- 3.7 Goldschmidt tolerance factor ( ) -- 3.8 Octahedral factor (OF) -- 4. Important Parameters of Organometallic Halide-Based Perovskite (OMHP) -- 4.1 Charge transport (CT) -- 4.2 Diffusion length and mobility of charge carriers -- 4.3 Electronic structure (ES) -- 4.4 Effect of effective masses of holes and electron carriers -- 5. Environmental instability of organometallic halides-based perovskites (OMHPs) solar cells -- 5.1 Degradation and stability issue -- 5.2 Effect of moisture -- 5.3 Effect of temperature -- 5.4 Effect of oxygen and light -- 6. Recent development in the OMHP solar cells -- 6.1 Ion migration and the suppression of ions -- 6.2 Solvent engineering -- 6.3 Annealing -- 6.4 2D/3D technology -- 6.5 Organometallic halides-based perovskite quantum dot solar cells -- 6.6 Solid-state hole conductor-free (HCF) OMHP-SCs -- 6.7 Tandem perovskite solar cells (TPSCs) -- 6.8 Passivation of OMHP-SCs -- Conclusion -- References -- 3 -- Perovskite Based Ferroelectric Materials for Energy Storage Devices -- 1. Introduction -- 2. Ferroelectricity -- 3. Ferroelectric Perovskites -- 4. Lead-Based Perovskite Ferroelectrics -- 4.1 Niobate-Based Ferroelectrics -- 4.2 Lanthanum Based Ferroelectrics -- 4.3 Lead-Free Perovskite Ferroelectrics -- 4.3.1 Barium Titanate Based Ferroelectric -- 4.3.2 Alkaline Niobate Based Ferroelectric -- 4.3.3 Bismuth Based Ferroelectrics. , 5. Energy Storage Devices -- 5.1 Types of Energy Storage Devices -- 5.1.1 Battery Energy Storage -- 5.1.2 Thermal Energy Storage -- 5.1.3 Pumped Hydroelectric Energy Storage -- 5.1.4 Mechanical Energy Storage -- 5.1.5 Hydrogen Energy Storage -- 6. Transport Properties -- 7. Energy Density of Ferroelectrics -- 7.1 Ways to Improve Energy Density -- 7.1.1 Chemical Substitution -- 8. High Energy Efficiency Perovskite Solar Cells -- 9. Ferroelectrics for Energy Storage Devices -- 9.1 Fuel Cells -- 9.2 Photocatalysts -- 9.2.1 Characterization and Preparation of Photo Catalysts -- 9.3 Capacitive Energy Storage Devices -- Conclusion -- References -- 4 -- Techniques for Recycling and Recovery of Perovskites Solar Cells -- 1. Introduction -- 1.1 Recycling Roadmap -- 1.2 Delamination of perovskite solar cell modules -- 3. Need of recycling -- 3.1 Degradation of perovskite solar cells -- 3.2 Use of expensive raw materials -- 3.3 Toxicity behavior of lead -- 4. Recycling of several parts of perovskite solar cells -- 4.1 Recycling of transparent conducting oxide (TCO) -- 4.2 Recycling of Electron Transport Layer (ETL) -- 4.3 Recycling of toxic lead component -- 4.4 Recycling of metal electrodes -- 4.5 Recycling of monolithic structure -- 5. Future challenges -- 6. Analysis of cost -- Conclusion and future perspective -- Conflict of interest -- Acknowledgment -- References -- 5 -- Lead-Free Perovskite Solar Cells -- 1. Introduction -- 2. Categories of Lead-Free Perovskite Solar Cells (PSCs) -- 2.1 Tin-Based PSCs -- 2.2 Germanium-Based PSCs -- 2.3 Antimony and bismuth-based PSCs -- 2.4 Halide double perovskites (HDPs) -- 3. Improvement Scopes in Lead-Free PSCs -- 3.1 Photovoltaic Efficiency -- 3.2 Stability -- 3.3 Defect Parameter Characterization and Defect Tolerance -- 3.4 Charge Transport Characterization -- 3.5 Electronic Dimensionality. , 4. Processing of High-Quality Lead-Free Perovskite Films -- 4.1 Vapour deposition method -- 4.2 Anti-Solvent Technique -- 4.3 Solution Processing -- 4.4 Two-Step Deposition -- 4.5 Low Pressure Assisted Solution Processing -- 4.6 Spin Coating -- 4.7 Inter-diffusion Method -- 4.8 Doctor Blade Coating -- 4.9 Vacuum Flash-Assisted Solution Process (VASP) -- 4.10 Complex Assisted Gas Quenching (CAGQ) method -- 4.11 Soft Cover Deposition (SCD) -- Conclusion and outlook -- References -- 6 -- Technical Potential Evaluation of Inorganic Tin Perovskite Solar Cells -- 1. Introduction -- 2. Inorganic tin perovskite solar cells parameters used in AHP analysis -- 3. AHP Methodology -- 4. Results and discussion -- Conclusions -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Nanotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (282 pages)
    Edition: 1st ed.
    ISBN: 9783030049492
    Series Statement: Environmental Chemistry for a Sustainable World Series ; v.31
    DDC: 541.395
    Language: English
    Note: Intro -- Preface -- Contents -- Contributors -- Chapter 1: Nanophotocatalysts for Fuel Production -- 1.1 Introduction -- 1.2 Quantum Dot Semiconductors -- 1.3 Synthesis of Quantum Dots -- 1.4 Application of Quantum Dots for Fuel Production -- 1.5 Conclusion -- References -- Chapter 2: Highly Stable Metal Oxide-Based Heterostructured Photocatalysts for an Efficient Photocatalytic Hydrogen Production -- 2.1 Photocatalysis -- 2.1.1 Photocatalytic Mechanism -- 2.1.2 Band Edge Positions -- 2.2 Semiconducting Metal Oxides for Photocatalytic Water Splitting -- 2.2.1 Metal Oxide-Based Heterostructured Photocatalysts -- 2.2.1.1 Energy Structure of TiO2 -- 2.2.1.2 Lattice Structure of TiO2 -- 2.3 The Challenges in Photocatalytic H2 Production Using TiO2 Particulate Systems -- 2.4 Strategies for Improving TiO2 Photocatalytic Activity -- 2.4.1 Addition of Sacrificial Reagents -- 2.4.2 TiO2-Based Semiconductors Under UV Light Irradiation -- 2.4.3 Photocatalytic Performance of TiO2 Under Visible Irradiation -- 2.4.4 Functionalization of TiO2 with Carbon Nanomaterials -- 2.4.4.1 Carbon Nanotubes -- 2.4.4.2 Graphene Oxide/Reduced Graphene Oxide (RGO) -- 2.5 Future Scope/Conclusions -- References -- Chapter 3: Novelty in Designing of Photocatalysts for Water Splitting and CO2 Reduction -- 3.1 Introduction -- 3.2 CO2 Reduction -- 3.2.1 Principles of CO2 Reduction -- 3.2.2 By-Products of CO2 Reduction -- 3.2.3 Synthesis of Nanoparticles -- 3.2.3.1 Doping of Photocatalyst -- 3.2.4 Commercial Challenges of CO2 Reduction -- 3.3 Water Splitting -- 3.3.1 The Basic Principle of Water Splitting -- 3.3.2 Photocatalyst for Water Splitting -- 3.3.2.1 Oxide-Based Photocatalyst -- 3.3.2.2 Nitride-Based Photocatalyst -- 3.3.3 Commercial Challenges of Water Splitting -- 3.4 Conclusion and Way Forward -- References. , Chapter 4: Z-Scheme Photocatalysts for the Reduction of Carbon Dioxide: Recent Advances and Perspectives -- 4.1 Introduction -- 4.2 Basic Principles of the Z-Scheme Reduction of CO2 -- 4.3 Advances in Z-Scheme Photocatalytic Reduction of CO2 -- 4.3.1 Z-Scheme Systems with Aqueous Shuttle Redox Mediator -- 4.3.2 All-Solid-State Z-Scheme Systems -- 4.3.3 Semiconductor/Metal-Complex Hybrid Z-Scheme Systems -- 4.3.4 Light Harvesting of Photocatalysts Utilized for the Z-Scheme CO2 Reduction -- 4.3.5 Cocatalyst Strategies for Z-Scheme CO2 Reduction -- 4.4 Summary and Outlook -- References -- Chapter 5: Photocatalysts for Artificial Photosynthesis -- 5.1 Introduction -- 5.2 General Photosynthesis Mechanism -- 5.3 Covalently Linked Molecular Systems for Artificial Photosynthesis -- 5.3.1 Porphyrin-Based Donor-Acceptor Molecular Systems -- 5.3.2 Subphthalocyanine-Based Light-Harvesting Complexes -- 5.3.3 BODIPY-Based Light-Harvesting Systems -- 5.4 Supramolecular Artificial Photosynthetic Systems -- 5.4.1 Metal-Ligand Interactions of Porphyrins/Naphthalocyanines with Electron Acceptors -- 5.4.2 Supramolecular Photosynthetic Complexes Via Crown Ether-Ammonium Cation Interactions -- 5.5 Conclusion -- References -- Chapter 6: Polymeric Semiconductors as Efficient Photocatalysts for Water Purification and Solar Hydrogen Production -- 6.1 Introduction -- 6.2 Photocatalysis -- 6.2.1 Basic Principles of Photocatalytic Reaction -- 6.2.2 Photocatalytic Properties -- 6.2.3 Photocatalytic Mechanism -- 6.3 Photocatalytic Functional Materials: Synthesis, Properties and Applications -- 6.3.1 Graphitic Carbon Nitride (g-C3N4) -- 6.3.1.1 Synthesis of Polymeric g-C3N4 -- 6.3.1.2 Photocatalytic Mechanism of g-C3N4 -- 6.3.1.3 Photodegradation of Chemical Pollutants Using g-C3N4 -- 6.3.1.4 Graphene Oxide-Based Hybrid Photocatalysts. , 6.3.2 Metal-Organic Framework (MOF)-Based Photocatalysts -- 6.3.2.1 Principles -- 6.3.2.2 Photocatalytic Applications of MOFs -- 6.3.3 TiO2-Based Hybrid Photocatalysts -- 6.3.3.1 Principles -- 6.3.3.2 Different Forms of TiO2 and Its Physicochemical Properties -- 6.3.3.3 Structure of TiO2 -- 6.3.3.4 Photocatalytic Mechanism of TiO2 -- 6.3.3.5 Hybrid Photocatalysts Based on TiO2 and Organic Conjugated Polymers -- 6.3.3.5.1 Properties of Polythiophene -- 6.3.3.5.2 Properties of Polyaniline -- 6.3.3.5.3 Properties of Polypyrrole -- 6.3.3.5.4 Synthesis of TiO2-Based Hybrid Photocatalysts with Different Organic Conjugated Polymers -- 6.3.3.5.5 Characterization of TiO2/Conjugated Polymer-Based Hybrid Catalysts -- 6.3.3.5.6 Antibacterial Activity of Photocatalysts -- 6.3.3.6 Environmental Application of Different Photocatalysts -- 6.3.3.6.1 Water Purification -- 6.3.4 Graphene Oxide (GO)-Based Photocatalyst for Dye Degradation and H2 Evolution -- 6.3.4.1 Photodegradation of Chemical Pollutants -- 6.3.4.2 Hydrogen (H2) Evolution Reaction by g-C3N4-Based Functional Photocatalysts -- 6.4 Conclusion -- References -- Chapter 7: Advances and Innovations in Photocatalysis -- 7.1 Introduction -- 7.2 Photocatalysts for Hydrogen Production -- 7.2.1 Nature of Different Sacrificial Agents and Typical Mechanism of Photoreforming -- 7.2.1.1 Methanol as a Sacrificial Agent -- 7.2.1.2 Ethanol as a Sacrificial Agent -- 7.2.1.3 Glycerol as a Sacrificial Agent -- 7.2.1.4 Glucose as a Sacrificial Agent -- 7.2.2 Hydrogen Production from Photocatalytic Wastewater Treatment -- 7.3 Photocatalysts Developed for the Synthesis of Organic Compounds in Mild Conditions -- 7.3.1 The Starting Point -- 7.3.2 The Effect of Supporting Metal Oxides on Titania on Selectivity -- 7.3.3 The Effect of Titania Dopant -- 7.3.4 The Effect of Titania Surface Area. , 7.3.5 The Effect of Substituting Titania -- 7.3.6 The Effect of Reactor and Illumination -- 7.3.7 Cyclohexanol and Cyclohexanone by Gas-Phase Photocatalytic Oxidation? -- 7.4 Photocatalytic Membrane Reactors -- 7.5 Concluding Remarks -- References -- Chapter 8: Solar Light Active Nano-photocatalysts -- 8.1 Introduction -- 8.2 Mechanism of Semiconductor-Mediated Photocatalysis -- 8.2.1 Nano-TiO2 as Photocatalysts -- 8.2.2 Nano-ZnO as Photocatalysts -- 8.2.3 Graphitic Carbon Nitride as Photocatalysts -- 8.2.4 Titanates as Photocatalysts -- 8.2.5 Nano-metal Sulphides as Photocatalysts -- 8.3 Strategies for Making Solar/Visible Light Active Photocatalysts -- 8.3.1 Metal/Non-metal Doping -- 8.3.2 Addition of Photosensitive Materials -- 8.3.3 Construction of Heterojunctions/Composites -- 8.3.4 Construction of Nanohybrid Materials -- 8.3.5 Surface Modification -- 8.4 Conclusion -- References -- Chapter 9: High-Performance Photocatalysts for Organic Reactions -- 9.1 Introduction -- 9.2 Photocatalytic Oxidation of Alcohols -- 9.3 Selective Oxidation and Oxidative Coupling of Amines -- 9.4 Photocatalytic Cyanation -- 9.5 Photocatalytic Cycloaddition and C-C Bond Formation Reactions -- 9.6 Miscellaneous Reactions -- 9.7 Outlook -- 9.8 Conclusion -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book presents the current status of superconductor science and technology.
    Type of Medium: Online Resource
    Pages: 1 online resource (266 pages)
    Edition: 1st ed.
    ISBN: 9781644902110
    Series Statement: Materials Research Foundations Series ; v.132
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Basic Concepts and Properties of Superconductors -- 1. Introduction and background -- 2. History of superconductors -- 3. Superconductors vs perfect conductors -- 4. Phenomenon of superconductivity -- 4.1 Zero resistance -- 4.2 Super-electron -- 4.3 Critical temperature for superconductors -- 5. Classification of superconductors -- 6. Properties of superconductor -- 6.1 Evanesce of electrical resistance -- 6.2 Flux lines and diamagnetism -- 6.3 Flux quantization in superconductors -- 6.4 Quantum interference -- 6.5 Josephson current -- Conclusion -- References -- 2 -- Properties and Types of Superconductors -- 1. Introduction -- 1.1 The Meissner effect and superconductors -- 2. History of superconductors -- 3. Types of superconductors -- 3.1 Type I superconductors -- 3.1.1 Examples -- 3.2 Type II superconductors -- 3.2.1 Examples -- 4. Comparisons between type I and type II superconductors -- 4.1 Meissner effect -- 4.2 Conduction of electrons -- 4.3 Surface energy -- 5. Superconducting materials -- 5.1 Metal based system superconductors -- 5.2 Copper oxides (Cuprates) -- 5.3 Iron based superconductors -- 6. Properties of superconductors -- Conclusion -- References -- 3 -- Fundamentals and Properties of Superconductors -- 1. Introduction -- 2. Types of superconductors -- 2.1 Type I and II superconductors -- 2.2 Organic superconductors -- 2.3 Magnetic superconductors -- 2.4 High temperature superconductors (HTS) -- 3. Properties of superconductors -- 3.1 Zero electric resistance -- 3.2 Meissner effect -- 3.3 Transition temperature -- 3.4 Critical current -- 3.5 Persistent currents -- 3.6 Idealized diamagnetisms, flux lines, with its quantization -- 3.7 Flux quantization -- 3.8 Josephson current -- 3.9 Josephson current in a magnetic field. , 3.10 Superconducting quantum interference device (SQUID) -- 3.11 Superconductivity: A macroscopic quantum phenomenon -- 3.12 Critical magnetic field -- Conclusion -- References -- 4 -- Superconductors for Large-Scale Applications -- 1. Introduction -- 2. Meissner effect: Attribute to superconductors -- 3. Advanced power transmission system -- 4. Super conducting electrical power devices -- 5. Advanced power storage system -- 6. Modern transportation -- 7. Advanced accelerators -- 8. Magnetic resonance devices -- 8.1 Magnetic resonance imaging for medical diagnostics -- 8.2 NMR spectroscopy -- 8.3 Fast field cycle relaxometer -- 9. SQUID -- Conclusion -- References -- 5 -- Lanthanide-based Superconductor and its Applications -- 1. Introduction -- 2. Lanthanide-based superconductors -- 2.1 Preparation methods -- 2.1.1 Solid state reaction processes -- 2.1.2 Laser heating -- 2.1.3 High-pressure synthesis -- 2.2 Characterization of lanthanide-based superconductors -- 2.3 Superconducting properties of the LBSC -- 2.4 Applications of LBSC -- Conclusions -- References -- 6 -- Type I Superconductors: Materials and Applications -- 1. Introduction -- 2. Type-I superconductors -- 3. History of superconductivity -- 3.1. Quest for low temperature -- 3.2 Discovery of Helium -- 3.3 Curiosity to know the resistance of metals at absolute zero? -- 3.4 Why mercury used to measure low-temperature resistance? -- 4. Attributes of superconductors -- 4.1 Current in a superconductor coil -- 4.2 How superconductors behave in an external magnetic field? -- 4.3 Unification of electric and magnetic behaviour -- 5. Characteristics of type-I superconductors -- 5.1 Critical Temperature (TC) -- 5.2 Meissner effect or perfect diamagnetism -- 5.3 Critical magnetic field (HC) -- 5.4 Critical current (IC) -- 5.5 Isotope effect -- 5.6 Development of theories of superconductivity. , 5.6.1 London equations and penetration depth -- 5.6.2 Ginzburg and Landau theory -- 5.6.3 BCS theory -- 5.7 Breakthroughs and outcomes of theoretical research -- 6. Applications -- 7. Issues with type-I superconductors -- References -- 7 -- Bulk Superconductors: Materials and Applications -- 1. Introduction -- 2. New era of high temperature superconductor -- 3. Type-II superconductors -- 4. Characteristics of type-II superconductors -- 4.1 Critical temperature (TC) -- 4.2 Critical magnetic field (HC) -- 4.3 Meissner effect or perfect diamagnetism -- 5. Different types of bulk superconductors -- 5.1 Alloys -- 5.2 Niobium alloys -- 5.3 Oxides, cuprates and ceramics -- 5.4 Fullerenes -- 6. Applications -- 6.1 Superconductor magnets and ordinary electromagnets -- 6.2 High field magnets -- 6.3 Magnetic levitation -- 6.4 Medical applications -- 6.5 Detectors -- 6.6 Josephson junctions -- Conclusion and future outlook -- Reference -- 8 -- Soft Superconductors: Materials and Applications -- 1. Introduction -- 2. Type 1 Superconductors -- 3. Structural properties of superconductors -- 4. A3B structure superconductors -- 5. MMo6X8& -- M2A3X3 structures superconductors -- 6. Cuprate superconductors structures -- 7. Production of superconductors -- 8. Wire production -- 9. Thin films production -- 10. Superconductor applications -- Conclusion -- References -- 9 -- Oxide Superconductors -- 1. Background -- 2. Unusual properties super conducting materials and proposed theories and hypothesis -- 3. Cooper pair model -- 4. Crystal structure analysis of superconducting materials -- 5. Applications of oxide superconductor -- Conclusions -- References -- 10 -- High Temperature Superconductors: Materials and Applications -- 1. Introduction -- 2. Science of HTSC -- 3. Nickel based HTSC -- 4. HTSC for fusion reactors. , 5. HTSC magnetic energy storage for power applications -- 6. HTSC materials based on bismuth -- 7. HTSC in co-axial magnetic gear -- Conclusions -- References -- 11 -- Superconducting Metamaterials and their Applications -- 1. Superconducting materials -- 2. Metamaterials -- 2.1 Low loss metamaterials -- 2.2 Scaling of SRR properties -- 2.3 Scaling of wire array properties -- 3. Novel superconducting metamaterial implementations -- 3.1 Ferromagnet- superconductor composites -- 3.2 DC magnetic superconducting metamaterials -- 3.3 SQUID metamaterials -- 4. Superconducting photonic crystal -- 5. Thin film superconducting metamaterial -- 6. Advantages of metamaterials -- 6.1 Compact superconducting materials -- 6.2 Tuneability and nonlinearity -- 6.3 Implementations of superconducting metamaterials -- 7. Novel applications -- Conclusion -- References -- 12 -- Superconductors for Medical Applications -- 1. Introduction -- 2. Medical applications -- 2.1 Magnetic resonance imaging (MRI) -- 2.1.1 Quench protection design of MRI superconducting magnet -- 2.1.2 Open MRI superconducting magnet -- 2.1.3 MRI food inspection system -- 2.2 Magnetic gene transfer -- 2.3 Magnetic drug delivery system -- 2.4 Cancer and internal hemorrhage detection -- Conclusions -- References -- back-matter -- Keyword Index -- About the Editors -- Superconductors for Magnetic Imaging Resonance Applications -- 1. Introduction -- 2. History of superconductor materials for MRI -- 2.1 Liquid helium free SN2 high-temperature fuperconductor magnet -- 2.2 Bismuth strontium calcium copper oxide (Bi2223): First SN2-HTS magnet -- 2.3 Magnesium diboride superconductors -- 2.3.1 Challenges and prospects for MgB2 MRI magnets -- 3. Potential superconductors for MRIs -- 3.1 Nb-Ti and Nb3Sn superconductors -- 3.2 Copper based superconductors. , 3.3 Rare - earth barium copper oxide superconductors (REBCO) -- 3.4 MgB2 superconductors -- 3.5 Iron-based superconductors (IBS) -- 4. Materials' and their applications' prospects in the future -- Conclusion -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: This book is intended to present the latest applicational advancements of MXenes in diversified sectors.
    Type of Medium: Online Resource
    Pages: 1 online resource (123 pages)
    Edition: 1st ed.
    ISBN: 9781644902875
    Series Statement: Materials Research Proceedings Series ; v.155
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Applications of MXenes in Supercapacitors -- 1. Introduction -- 2. Brief idea of MAX phase and MXene -- 3. MXene and MXene-based composites as supercapacitor electrode materials -- 4. Parameters that affect the electrochemical behaviors of MXene -- 4.1 Etchant -- 4.2 Etchant concentration -- 4.3 Surface termination group -- 4.4 Partial etching of 'A' group from the MAX phase -- 4.5 Etching time and etching temperature -- 5. Different types of supercapacitors with MXene -- 5.1 MXene-based symmetric supercapacitor -- 5.1.1 One-dimensional (1D) supercapacitor -- 5.1.2 Two-dimensional (2D) supercapacitor -- 5.1.3 Three-dimensional (3D) supercapacitor -- 5.2 MXene-based asymmetric supercapacitor -- 5.3 Current MXene based micro-supercapacitor -- 5.4 MXene-based transparent supercapacitor -- Conclusion -- References -- 2 -- Applications of MXenes in EMI shielding -- 2. Electromagnetic interference shielding mechanism -- 3. MXene for EMI shielding -- 3.1 Recent progress in EMI shielding performance of different MXenes composites -- Conclusion -- Acknowledgments -- References -- 3 -- MXenes for Nanophotonics -- 1. MXenes -An introduction and as a 2D Material -- 2. Types of MXene -- 3. Non-linear optical behavior of MXene -- 3.1 , - ., - ., - . MXene -- 3.2 , - ., - . MXene -- 3.2.1 Synthesis of , - ., - . MXene -- 3.2.2 Characterization Results -- 4. Optical and Electronic Trends -- 4.1 Optical Properties -- 4.2 Electronic properties -- 5. Theoretical outcomes -- 6. Experimental outcomes -- 7. Device implementation -- 7.1 Saturable absorber -- 7.2 Photodetectors based on MXene -- 7.3 Light emitting diodes -- 7.4 Photovoltaic devices -- 8. Future perspectives and challenges -- Conclusion -- References -- 4 -- Application of MXenes in Photodetectors -- 1. Introduction. , 2. Preparation techniques of MXenes -- 2.1 Etching (HF etching) method -- 2.2 Non-HF etching methods -- 2.3 Hydrothermal method -- 3. Properties of MXenes -- 3.1 Mechanical properties -- 3.2 Structural properties -- 3.3 Electronic properties -- 3.4 Optical properties -- 4. Application of MXenes in the field of photodetectors -- Conclusion -- Acknowledgments -- References -- 5 -- Applications of MXenes in Electrocatalysis -- 1. Introduction -- 1.1 Features of MXene as an Electrocatalyst -- 1.2 Mechanical properties of MXENE -- 1.3 Electrical structures of MXenes -- 2. Synthesis of MXenes -- 3. Applications of MXene as electrocatalyst -- 3.1 MXene for hydrogen evolution reaction -- 3.2 MXene for nitrogen reduction reaction -- 3.2 MXene for carbon dioxide reduction reaction -- 3.4 MXene for environmental remediation -- 3.5 MXene-based electrocatalysts for ORR -- 3.6 MXene for batteries storage and supercapacitors -- Conclusion -- Acknowledgments -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Millersville :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book is concerned with the use of Artificial Intelligence in the discovery, production and application of new engineering materials.
    Type of Medium: Online Resource
    Pages: 1 online resource (147 pages)
    Edition: 1st ed.
    ISBN: 9781644902530
    Series Statement: Materials Research Foundations Series ; v.147
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Artificial Intelligence Nano-Robots -- 1. Introduction -- 2. Composites -- 2.1 Liquid crystal elastomers -- 2.2 Shape memory polymers -- 2.3 Hydrogels -- 2.4 CNT actuators -- 2.5 Conducting polymers -- 3. Components and materials -- 4. Movement in nanorobots -- 5. Mechanism and stimulation -- 6. Trust dimensions -- 6.1 Reliability and safety -- 6.2 Explainability and interpretability -- 6.3 Privacy and security -- 6.4 Performance and robustness -- 7. Actuators -- 7.1 Thermally responsive actuators -- 7.2 Photo-responsive actuators -- 7.3 Magnetically responsive actuators -- 7.4 Electrically responsive actuators -- 8. Applications -- 8.1 Cancer detection and its treatment -- 8.2 Nanorobots in the diagnosis and treatment of diabetes -- 8.3 Artificial oxygen carrier nanorobot -- 9. Future challenges -- Conclusion and future scope -- Conflict of interest -- Acknowledgment -- References -- 2 -- Data Mining in Material Science -- 1. Introduction -- 2. Machine learning and materials science -- 3. ML algorithms in materials science -- 4. Steps in machine learning for materials science -- 4.1 Experience -- 4.2 Task -- 4.3 Classification -- 4.4 Regression -- 4.5 Clustering -- 4.6 Dimension reduction and conception -- 4.7 Efficient searching -- 4.8 Performance measure -- 4.9 Model particulars -- 4.10 Supervised model -- Conclusion -- References -- 3 -- Artificial Intelligence Applications in Solar Photovoltaic Renewable Energy Systems -- 1. Introduction -- 1.1 Overview of Solar PV Renewable Energy System and Artificial Intelligence (AI) Technology -- 1.2 Solar energy generation -- 1.3 Classification of solar energy technologies (SET) -- 1.3.1 Concentrated solar-thermal power (CSP) -- 1.3.2 Solar photovoltaic energy -- 2. Artificial intelligence (AI) -- 2.1 Machine learning -- 2.2 Deep learning. , 2.2.1 Convolutional neural networks (CNNs) -- 2.2.2 Long short-term memory (LSTM) -- 2.2.3 Generative adversarial network (GAN) -- 3. Application of AI in solar PV system -- 3.1 Monitoring of PV systems -- 3.2 PV fault detection and diagnosis (FDD) methods -- 3.3 Employment of AI technologies for sizing PV systems -- 3.4 Modelling of a solar PV generator -- 3.5 Solar water heating systems (SWHs) -- 4. Challenges of effective AI application in solar PV system -- 4.1 Solar energy optimization -- 4.2 PV-dependent hybrid facility optimization -- 4.3 External factors of solar energy generation -- 4.4 Challenges in the development of solar energy systems -- 4.5 Solar energy transformation -- 5. Prospects and future work consideration -- Conclusion -- References -- 4 -- Artificial Intelligence in Material Genomics -- 1. Introduction -- 2. Material genomics -- 3. Strength of artificial intelligence -- 4. Artificial intelligence in material genomics -- Conclusion -- References -- 5 -- Applications of Artificial Intelligence in Polymer Manufacturing -- 1. Introduction -- 1.1 Advantages and disadvantages of artificial intelligence in polymer manufacturing -- 2. Classification of artificial intelligence -- 2.1 Classification of AI based on capabilities -- 3. Key Developments and commercialization in the polymer industry -- 4. Application of artificial intelligence in polymer manufacturing -- 4.1 Artificial intelligence and polymer manufacturing -- 4.2 Biodegradable polymers and artificial intelligence -- 4.3 Artificial intelligence and packaging industries -- 4.4 Agriculture and artificial intelligence -- 4.5 Healthcare and artificial intelligence -- 4.6 Artificial intelligence and dentistry -- 4.7 Food industry and artificial intelligence -- 4.8 Cosmetic artificial intelligence -- 5. Future prospects and conventional challenges. , 6. Guidelines, rules, and regulations for polymeric manufacturing -- Conclusion -- Acknowledgment -- Conflict of Interest -- Reference -- 6 -- Artificial Intelligence for Energy Conversion -- 1. Introduction -- 2. Alternative sources of energy and artificial intelligence -- 3. Machine learning and its application in material sciences -- 4. Limitation of principled method and how ML can intervene -- 5. Applications of AI in the domain of energy conversions -- 5.1 AI in photonics -- 5.2 AI in electrochemical catalyst -- 5.3 AI in electrolysis -- 5.4 AI in fuel cell technology -- Conclusions -- Acknowledgments -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...