GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Botanical chemistry. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (318 pages)
    Edition: 1st ed.
    ISBN: 9789811566073
    Series Statement: Environmental and Microbial Biotechnology Series
    DDC: 579
    Language: English
    Note: Intro -- Preface -- Contents -- 1: Application of Microbial Biosurfactants in the Food Industry -- 1.1 Surfactants in the Food Industry -- 1.1.1 Food Additives -- 1.1.2 Biosurfactants as Food Preservatives -- 1.1.2.1 Emulsifying Agents -- 1.1.2.2 Antibiofilm Agents -- 1.1.2.3 Antimicrobial Agents -- 1.1.2.4 Antioxidant Agents -- 1.1.3 Industrial Prospects -- References -- 2: Microbial Biosurfactants for Contamination of Food Processing -- 2.1 Introduction -- 2.1.1 Food Contamination -- 2.1.2 Contamination in Food Processing -- 2.2 Microbial Biosurfactants Use in Food Processing -- 2.2.1 Glycolipids -- 2.2.2 Lipopeptides -- 2.3 Application of Microbial Surfactants in Food Processing -- 2.3.1 Biofilm Control -- 2.3.2 Food Preservatives -- 2.4 Concluding Remarks -- References -- 3: Antioxidant Biosurfactants -- 3.1 Introduction -- 3.2 Sources of Biosurfactants -- 3.2.1 Plant-Based Biosurfactants -- 3.2.1.1 Saponins -- Structure, Properties, and Types of Saponins -- Saponins as a Biosurfactants -- 3.2.2 Microbe-Based Biosurfactants -- 3.2.2.1 Types of Microbial Surfactants -- Glycolipids -- Rhamnolipids -- Sophorolipids -- Trehalolipids -- Succinoyl Trehalolipids -- Cellobiose Lipids -- Mannosylerythritol Lipids -- Xylolipids -- Mannose Lipids -- Lipopeptides or Lipoprotein -- Bacillus-Related Lipopeptides -- Surfactin -- Fengycin -- Iturin -- Kurstakins -- Lichenysins -- Pseudomonas-Related Lipopeptides -- Actinomycetes-Related lipopeptides -- Fungal-Related Lipopeptides -- Phospholipids, Fatty Acids (Mycolic Acids), and Neutral Lipids -- Polymeric Surfactants -- Particulate Surfactants -- 3.3 Factors Affecting Biosurfactant Production -- 3.3.1 pH and Temperature -- 3.3.2 Aeration and Agitation -- 3.3.3 Effect of Salt Salinity -- 3.3.4 Optimization of Cultivation Medium -- 3.3.4.1 Effect of Carbon Source -- 3.3.4.2 Effect of Nitrogen Source. , 3.3.4.3 Effect of Carbon to Nitrogen (C/N) Ratio -- 3.4 Screening of Microorganisms for Biosurfactant Production -- 3.4.1 Oil Spreading Assay -- 3.4.2 Drop Collapse Assay -- 3.4.3 Blood Agar Method/Hemolysis Assay -- 3.4.4 Hydrocarbon Overlay Agar -- 3.4.5 Bacterial Adhesion to Hydrocarbon (BATH) Assay -- 3.4.6 CTAB Agar Plate Method/Blue Agar Assay -- 3.4.7 Phenol: Sulfuric Acid Method -- 3.4.8 Microplate Assay -- 3.4.9 Penetration Assay -- 3.4.10 Surface/Interface Activity -- 3.4.11 Emulsification Activity -- 3.5 Antioxidant Properties of Biosurfactant -- 3.6 Conclusion -- References -- 4: Classification and Production of Microbial Surfactants -- 4.1 Introduction -- 4.1.1 Global Biosurfactant Market -- 4.2 Types of Biosurfactants -- 4.2.1 Glycolipids -- 4.2.1.1 Rhamnolipids -- 4.2.1.2 Sophorolipids -- 4.2.1.3 Trehalolipids -- 4.2.2 Lipoproteins and Lipopeptides -- 4.2.3 Fatty Acids -- 4.2.4 Phospholipids -- 4.2.5 Polymeric Biosurfactants -- 4.3 Factors Influencing Biosurfactant Productivity -- 4.3.1 Nutritional Factors -- 4.3.1.1 Carbon Source -- 4.3.1.2 Low-Cost and Waste Substrates -- 4.3.1.3 Nitrogen Source -- 4.3.1.4 Minerals -- 4.3.2 Environmental Factors -- 4.3.3 Cultivation Strategy -- 4.3.3.1 Solid-State Fermentation (SSF) -- 4.3.3.2 Submerged Fermentations (SmF) -- References -- 5: Microbial Biosurfactants and Their Potential Applications: An Overview -- 5.1 Introduction -- 5.2 Classes of Biosurfactants -- 5.2.1 Glycolipids -- 5.2.2 Lipopolysaccharides -- 5.2.3 Lipopeptides and Lipoproteins -- 5.2.4 Phospholipids -- 5.2.5 Fatty Acids -- 5.3 Microbial Production of Biosurfactants -- 5.4 Genes Involved in the Production of Microbial Biosurfactants -- 5.5 Applications -- 5.5.1 In Petroleum Industry -- 5.5.1.1 Mechanism of MEOR -- 5.5.2 Biosurfactant-Mediated Bioremediation -- 5.5.3 In Food Industry -- 5.5.4 In Agriculture. , 5.5.5 In Cosmetics -- 5.5.6 Biosurfactant in Nanotechnology -- 5.5.7 Biosurfactants as Drug Delivery Agents -- 5.5.8 Antimicrobial Activity of Biosurfactants -- 5.5.9 Biosurfactant as Anti-Adhesive Agent -- 5.5.10 In Fabric Washing -- 5.6 Conclusions -- References -- 6: Biodegradation of Hydrophobic Polycyclic Aromatic Hydrocarbons -- 6.1 Introduction -- 6.2 Health Related to PAHs -- 6.2.1 Consequences of Consistent of PAH Exposure by Human -- 6.2.2 Problems Associated with PAHs Via Cytochrome P450 -- 6.3 Biodegradation of PAHs -- 6.3.1 Challenges of Limited Aqueous Solubility in Water -- 6.3.2 Biodegradation Pathway of PAHs -- 6.3.2.1 Naphthalene -- 6.3.2.2 Pyrene -- 6.3.2.3 Fluoranthene -- 6.4 Biosurfactants -- 6.4.1 Biosurfactants -- 6.4.1.1 Glycolipid -- Rhamnolipids -- Cellobiose Lipids -- Sophorolipids -- Trehalolipids -- Mannosylerythritol Lipid -- 6.4.1.2 Lipopeptides -- 6.4.1.3 Phospholipids -- 6.4.2 Polymeric Biosurfactants -- 6.5 Enhanced Biodegradation of PAHs by Biosurfactant -- 6.5.1 Biodegradation in Micelles -- 6.5.2 Biosurfactant Acting as Bioemulsifier -- 6.6 Conclusions -- References -- 7: Surfactin: A Biosurfactant Against Breast Cancer -- 7.1 Introduction -- 7.2 Biosurfactants and Its Types -- 7.2.1 Glycolipids -- 7.2.1.1 Rhamnolipids -- 7.2.1.2 Sophorolipids -- 7.2.1.3 Trehalolipids -- 7.2.2 Lipopeptides -- 7.2.3 Fatty Acids -- 7.2.4 Phospholipids -- 7.2.5 Polymeric Biosurfactant -- 7.3 Surfactin: Structure, Membrane Interaction, Biosynthesis, and Regulation -- 7.3.1 Structure -- 7.3.2 Membrane Interaction -- 7.3.3 Biosynthesis -- 7.3.4 Regulation -- 7.4 Surfactin and Breast Cancer -- 7.5 Conclusion -- References -- 8: Anti-Cancer Biosurfactants -- 8.1 Introduction -- 8.2 Biosurfactants Classification and Structure -- 8.2.1 Mannosylerythritol Lipids (MELs) -- 8.2.2 Succinoyl Trehalose Lipids (STLs) -- 8.2.3 Sophorolipids. , 8.2.4 Rhamnolipids (RLs) -- 8.2.5 Myrmekiosides -- 8.2.6 Cyclic Lipopeptides (CLPs) -- 8.2.6.1 Amphisin, Tolaasin, and Syringomycin CLPs -- 8.2.6.2 Iturin and fengycin CLPs -- 8.2.6.3 Surfactin CLP -- 8.2.7 Rakicidns and Apratoxins -- 8.2.8 Serrawettins -- 8.2.9 Monoolein -- 8.2.10 Fellutamides -- 8.3 Biosurfactants Production -- 8.3.1 Factors Involved in Biosurfactants Production -- 8.3.1.1 Source of Carbon -- 8.3.1.2 Source of Nitrogen -- 8.3.1.3 Effect of Ions -- 8.3.1.4 Physical Factors -- 8.4 Anti-Cancer Activity of Biosurfactants -- 8.4.1 Breast Cancer -- 8.4.2 Lung Cancer -- 8.4.3 Leukemia -- 8.4.4 Melanoma -- 8.4.5 Colon Cancer -- 8.5 Biosurfactants as Drug Delivery System (DDS) -- 8.5.1 Liposomes -- 8.5.2 Niosomes -- 8.5.3 Nanoparticles -- 8.6 Conclusions and Future Challenges -- References -- 9: Biosurfactants for Oil Pollution Remediation -- 9.1 Introduction -- 9.2 Oil Pollution and Its Remediation -- 9.2.1 Oil Pollution -- 9.2.2 Oil Remediation in Polluted Environments -- 9.3 Biosurfactants -- 9.3.1 Synthesis of Biosurfactants -- 9.3.2 Biosurfactant Role in Oil Degradation -- 9.4 Application of Biosurfactants Used for Oil Remediation -- 9.4.1 Oil-Polluted Soil Bioremediation -- 9.4.2 Bioremediation of Marine Oil Spills and Petroleum Contamination -- 9.4.3 Cleaning of Oil Tanks and Pipelines -- 9.4.4 Bioremediation of Heavy Metals and Toxic Pollutants -- 9.5 Conclusion -- References -- 10: Potential Applications of Anti-Adhesive Biosurfactants -- 10.1 Introduction -- 10.2 Biosurfactants That Display Anti-Adhesive Activity -- 10.3 Biofilms and the Adhesion Process: Mechanisms and Effects -- 10.4 Applications of Biosurfactants as Anti-Adhesive Agents -- 10.4.1 Anti-Adhesive Applications in the Biomedical Field -- 10.4.2 Anti-Adhesive Applications in the Food Industry Surfaces -- 10.5 Future Trends and Conclusions -- References. , 11: Applications of Biosurfactant for Microbial Bioenergy/Value-Added Bio-Metabolite Recovery from Waste Activated Sludge -- 11.1 Introduction -- 11.2 Applications of Surfactants for Value-Added Bio-Metabolites Recovery from WAS -- 11.3 Applications of Surfactants for Energy Recovery from WAS -- 11.4 Applications of Surfactants for Refractory Organic Decontamination from WAS -- 11.4.1 PAHs Decontamination -- 11.4.2 Dye Decontamination -- 11.4.3 PCB Decontamination -- 11.5 Applications of Surfactants for WAS Dewatering -- 11.6 Applications of Surfactants for Heavy Metal Removal from WAS -- 11.7 State-of-the-Art Processes to Promote Organics Biotransformation from WAS -- 11.7.1 Co-Pretreatment -- 11.7.2 Interfacing AD with Bioelectrochemical Systems -- 11.7.3 Optimizing Process Conditions -- 11.8 Conclusion -- References -- 12: Application of Microbial Biosurfactants in the Pharmaceutical Industry -- 12.1 Introduction -- 12.2 Mechanism of Interaction of Biosurfactants -- 12.3 Physiochemical Properties -- 12.3.1 Surface Tension -- 12.3.2 Biosurfactant and Self-Assembly -- 12.3.3 Emulsification Activity -- 12.4 Application of Biosurfactants in Pharmaceutical Industry -- 12.4.1 Biosurfactant as an Antitumor/AntiCancer Agent -- 12.4.2 Biosurfactants as Drug Delivery Agents -- 12.4.3 Wound Healing and Dermatological Applications -- 12.4.4 Potential Antimicrobial Application -- 12.4.5 Other Applications in the Pharmaceutical Field -- 12.5 Applications of Surfactin in Pharmaceutical Industry -- 12.6 Concluding Remarks -- References -- 13: Antibacterial Biosurfactants -- 13.1 Introduction -- 13.2 Glycolipids -- 13.2.1 Rhamnolipids -- 13.2.2 Sophorolipids -- 13.2.3 Trehalose Lipids -- 13.3 Lipopeptides -- 13.4 Phospholipids -- 13.5 Antibacterial Activity -- 13.6 Polymeric Surfactants -- 13.7 Fatty Acids -- 13.7.1 Bio-Sources of Fatty Acids. , 13.7.2 Role of Fatty Acids as Antimicrobials.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book presents an in-depth review of biomass-derived materials for energy storage technologies. Biomass is the most renewable and abundant carbon resource and has great potential for sustainable energy production.
    Type of Medium: Online Resource
    Pages: 1 online resource (151 pages)
    Edition: 1st ed.
    ISBN: 9781644900871
    Series Statement: Materials Research Foundations Series ; v.78
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Bone Char as a Support Material to Build a Microbial Biocapacitor -- 1. Introduction -- 2. Influence of the chemical and textural properties on biochar -- 3. Bioanode preparation -- 4. Accumulated charge -- 5. Biochar-based anode and bioanode capacitances -- Conclusions -- Acknowledgements -- List of abbreviations -- References -- 2 -- Nature Inspired Materials for Energy Storage -- 1. Introduction -- 2. Properties of nature-derived carbons properties for fulfilling the operational need for EDLC- supercapacitors -- 3. Various preparation mechanisms for nature derived carbons for supercapacitor -- 4. Advantages of naturally-derived carbons over graphene and CNT for EDLC supercapacitors -- 5. Use of different biological precursors -- 5.1 Plant-derived precursors -- 5.2 Fruit based precursors -- 5.3 Microbial-based precursors -- 5.4 Animal-based precursors -- 6. Structural characteristics and properties of nature derived carbons -- Conclusions and future directions -- References -- 3 -- Biomass Derived Composites for Energy Storage -- 1. Introduction -- 2. Sustainable biomass-carbon materials -- 3. Calculation paramaters -- 4. Biomass activation -- 4.1 Physical activation -- 4.2 Chemical activation -- 4.3 Hydrothermal carbonization -- 4.4 Other activations -- 5. Outlook -- Conclusions and prospects -- References -- 4 -- Lignin-Derived Materials for Energy Storage -- 1. Introduction -- 2. Lignin isolation process -- 3. Lignin carbon fibres -- 3.1 Activation techniques -- 3.2 Lignin- Lignin blends -- 3.3 Lignin-Cellulose blends -- 3.4 Fractionation -- 3.5 Reinforcement -- 3.6 Chemical modification -- 3.7 New lignin types -- 4. Lignin-derived porous carbon -- 5. Challenges with graphite-based electrodes -- 6. Lignin for electrochemical applications -- 6.1 Lithium-ion batteries. , 6.2 Electrochemical double layer capacitors -- 6.3 Electrochemical pseudocapacitors -- 6.4 Sodium -ion batteries -- 6.5 Lignin as binder -- Conclusion and Perspectives -- Acknowledgements -- This research work was financially supported by the University Malaya Impact-Oriented Interdisciplinary Research Grant (No.IIRG018A-2019) and Global Collaborative Programme - SATU Joint Research Scheme (No. ST012-2019). -- References -- 5 -- Bamboo Derived Materials for Energy Storage -- 1. Introduction -- 2. Fabrication of electrode material for supercapacitor application -- 3. Physical characterization -- 4. Electrochemical measurements -- Conclusion -- References -- 6 -- Cellulose-Derived Electrodes for Energy Storage -- 1. Introduction -- 2. Cellulose based flexible composite electrodes -- 3. Cellulose carbonization and activation -- 4. Cellulose-derived carbon for supercapacitors -- 5. Cellulose-derived carbon for high-frequency supercapacitors -- 6. Cellulose-derived carbon for lithium-ion batteries -- 7. Cellulose-derived carbon for lithium-sulfur batteries -- 8. Cellulose-derived carbon for other batteries -- Conclusion -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book reviews the fundamental concepts and recent advances in the areas of anodes, cathodes, electrolytes, separators, binders, fabrication of device assemblies and electrochemical performance.
    Type of Medium: Online Resource
    Pages: 1 online resource (211 pages)
    Edition: 1st ed.
    ISBN: 9781644900918
    Series Statement: Materials Research Foundations Series ; v.80
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Fabrication of TiO2 Materials for Lithium-ion Batteries -- 1. Introduction -- 2. Synthesis of TiO2 /graphene nanocomposites and metal oxides core-shells SnO2@TiO2 nanotube hybrids -- 2.1 Preparation of TiO2 NRDS -- 2.2 Synthesis of TiO2 NFBS -- 2.3 Synthesis of TiO2 nanocomposites with graphene -- 2.4 Synthesis of coaxial SnO2@TiO2 nanotube hybrids -- 3. Fabrication of cell for electrochemical characterization -- 3.1 Electrochemical measurements for TiO2/graphene nanocomposite -- 3.2 Electrochemical tests for coaxial SnO2@TiO2 nanotube hybrids -- 4. Characterization of TiO2/graphene nanocomposites -- 4.1 TiO2 /graphene nanocomposites -- 4.1.1 SEM -- 4.1.2 TEM -- 4.1.3 XRD -- 4.1.4 Raman -- 4.1.5 BET -- 4.1.6 EDX -- 4.2 Electrochemical Testing -- 5. Characterization of coaxial SnO2@TiO2 nanotube hybrids -- 5.1 Coaxial SnO2@TiO2 nanotube hybrids -- 5.1.1 SEM & -- TEM -- 5.1.2 XRD -- 5.1.4 Electrochemical testing -- Conclusion -- Acknowledgement -- References -- 2 -- A Brief History of Conducting Polymers Applied in Lithium-ion Batteries -- 1. Introduction -- 2. Applications on cathode materials -- 2.1 Before 2000: Emergence stage -- 2.2 2000-2006: Preliminary stage -- 2.3 Since 2007: Fast development stage -- 3. Applications on anode materials -- 3.1 Before 2010: Emergence stage -- 3.2 Since 2010: Rising stage -- Conclusions & -- Outlooks -- Acknowledgment -- References -- 3 -- 2D Transition Metal Dichalcogenides for Lithium-ion Batteries -- 1. Introduction -- 2. MoS2-based anode materials for LIBs -- 3. WS2-based anode materials for LIBs -- 4. MoSe2 based anode materials for LIBs -- 5. WSe2-based anode materials for LIBs -- 6. Other TMDs for LIBs -- 7. Summary and future outlooks -- Acknowledgement -- References -- 4 -- Metal Sulphides for Lithium-ion Batteries. , 1. Introduction -- 2. Demands on batteries in 21st Century -- 3. Design of a lithium-ion battery (LIB) -- 4. Materials related issues in LIBs in modern era -- 5. Advantages of metal-sulphides for LIBs -- 6. Metal sulphide based nanocomposites for battery applications -- 7. Different types of metal sulphides as anode materials in the LIBs applications -- 7.1 Layered metal-sulphides for LIBs. -- 7.2 Copper sulphides -- 7.3 Cobalt sulphides -- 7.4 Molybdenum disulphide (MoS2) -- 7.5 Tungsten disulphide (WS2) -- 7.6 Iron disulphide (FeS2) -- 7.7 Tin sulphides -- 7.8 Nickel Sulphides -- 8. Synthesis techniques for metal sulphides -- 8.1 Solid state method -- 8.2 The hydro/solvothermal method -- 8.3 Microwave-assisted hydrothermal synthesis -- 8.4 Spraying-related methods -- 9. Summary -- References -- 5 -- Magnetic Nanomaterials for Lithium-ion Batteries -- 1. Introduction -- 2. History of LIBs -- 3. LIB Technology -- 4. LIB working principle -- 5. Nanomaterials -- 6. Nanomaterials in anode for LIBs -- 7. Nanomaterials in cathode for LIBs -- Conclusions -- References -- 6 -- Recent Advances in Nanomaterials for Li-ion Batteries -- 1. Introduction -- 2. Structure and working of Li-ion battery -- 3. Electrochemical behavior of various materials for Li-ion batteries -- Conclusions -- References -- 7 -- Silicon Materials for Lithium-ion Battery Applications -- 1. Introduction -- 1.1 Overview on lithium battery technology -- 1.2 Silicon as anode for lithium batteries: -- 1.2.1 0D nanostructures -- 1.2.2 1D nanostructures -- 1.2.3 2D nanostructures -- 1.2.4 3D-nanostructures -- 2. Electrochemical performance of silicon based nanostructures -- Conclusion -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book covers the fundamental principles and applications of sodium-ion batteries and reports experimental work on the use of electrolytes and different electrode materials, such as silicon, carbon, conducting polymers, and Mn- and Sn-based materials. Also discussed are state-of-the-art, future prospects and challenges in sodium-ion battery technology.
    Type of Medium: Online Resource
    Pages: 1 online resource (280 pages)
    Edition: 1st ed.
    ISBN: 9781644900833
    Series Statement: Materials Research Foundations Series ; v.76
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- NASICON Electrodes for Sodium-Ion Batteries -- 1. Introduction -- 2. Machinery of SIBs -- 2.1 Storing the progression of NASICON materials -- 2.2 Cathode materials based on NASICON type -- 2.2.1 NASICON-type nanoparticles of Fe2(MoO4)3 wrapped with graphene -- 2.2.2 NASICON-type materials based on Na3V2(PO4)3 -- 2.2.3 NASICON-type materials based on Na3V2(PO4)2F3 and Na3V2(PO4)3 -- 2.2.4 NASICON-type materials of porous Na3V2(PO4)3 and NaTi2(PO4)3 -- 2.2.5 A negative electrode of Mg0.5Ti2(PO4)3 based NASICON materials -- 2.2.6 Numerous other NASICON cathode materials -- 2.3 Anode materials based on NASICON-type -- 2.3.1 NaTi2(PO4)3 (NTP) type anode materials -- 2.3.2 NaZr2(PO4)3 (NZP) type anode materials -- 2.3.3 Numerous other NASICON anode materials -- 2.4 Commercial prospects of NIB technologies -- Conclusions -- Acknowledgment -- References -- 2 -- Carbon Anodes for Sodium-Ion Batteries -- 1. Introduction -- 2. Overview of SIBs electrode materials -- 3. Carbon anode materials for advanced SIBs -- 3.1 Graphite as anode for SIBs -- 3.2 Hard carbon as anode for SIBs -- 3.3 Graphene as anode for SIBs -- 3.4 Carbon nanofibers as anode for SIBs -- 3.5 Biomass-derived carbon as anode for SIBs -- 3.6 Heteroatom-doped carbon materials as anode for SIBs -- References -- 3 -- Organic Electrode Material for Sodium-Ion Batteries -- 1. Introduction -- 2. Molecular design of electrodes for organic sodium ion batteries -- 2.1 Organic electrodes constituting of C=O based reaction -- 2.1.1 Carbonyl compounds -- 2.1.2 Polyimides -- 2.1.3 Quinones -- 2.1.4 Carboxylates -- 2.1.5 Anhydrides -- 2.2 Organic electrodes based on doping reaction -- 2.2.1 Organic radical polymers -- 2.2.2 Conductive polymers -- 2.2.3 Conjugated microporous polymers -- 2.2.4 Organometallic polymers. , 2.3 Organic electrode constituting of C=N based reaction -- 2.3.1 Schiff bases -- 2.3.2 Pteridine derivatives -- 3. Electrode design for sodium-ion batteries -- 3.1 Molecular engineering -- 3.2 Polymerization -- 3.3 Combining with carbon (carbon hybrid) -- 3.4 Electrolyte modification -- 4 Future challenges -- References -- 4 -- Alloys for Sodium-Ion Batteries -- 1. Introduction -- 2. Sodium ion batteries anode materials -- 3. Hard carbon -- 4. Carbon nanostructures -- 5. Carbon and alloy-based material composites -- 6. Alloying reactions-based anode materials -- 6.1 P-based materials -- 6.1.1 Red phosphorous -- 6.1.2 Black phosphorous -- 7. Conversion based material -- 7.1 Metal oxides -- 7.2 Metal sulfides -- 8. Graphene -- Conclusion and challenges -- Acknowledgments -- References -- 5 -- Mn-Based Materials for Sodium-Ion Batteries -- 1. Introduction -- 2. History -- 3. Types -- 4. Sodium-ion batteries -- 5. Mn-based sodium-ion batteries -- References -- 6 -- Tin-Based Materials for Sodium-Ion Batteries -- 1. Introduction -- 2. Types of Sn-based anodes -- 3. Electrochemical performance -- 4. Structure and design -- 5. Performance -- 6. Thermal stability -- 7. Mechanism -- 8. Drawbacks -- 9. Factors affecting the capacity of Sn based sodium ion batteries -- Conclusion -- References -- 7 -- Conducting Polymer Electrodes for Sodium-Ion Batteries -- 1. Introduction -- 2. Types of Energy depository technologies in static application -- 2.1 Pump hydroelectric depository (PHD) -- 2.2 Compressed air energy depository (CAED) -- 2.3 Electrochemical energy storage (EED) -- 3. Lithium-ion batteries (LIBs) -- 4. Beginning of new technology in the field of energy storage -- 4.1 Electrode material for SIBs -- 5. Polymer electrode material for the SIBs -- 5.1 Polyimides -- 6. Conducting polymers. , 6.1 Conducting polymer can provide electromagnetic shielding of electronic devices -- 6.2 It absorbs microwaves by using stealth technology -- 6.3 It can be used as a hole injecting electrode for OLEDs -- 6.4 Some conducting polymers are promising for field effect transistor (FET) -- 6.5 It can be used in display technology due to their electroluminescent property -- 7. Types of conductive polymer -- 7.1 Electrically conducting polymer -- 7.2 Doping in conductive polymer -- 7.3 Polyacetylene and polyphenylene as electrode material for the SIBs -- 7.4 Conjugated conductive polymer and charge storage mechanism -- 7.5 Non-conjugated conductive radical polymer -- 7.6 Inorganic nanoparticles-conducting polymer composite based battery electrodes -- 8. Why conducting polymer? -- 9. Functions of CPs -- 9.1 Merits and demerits of the conducting polymer -- Conclusion -- Acknowledgement -- References -- 8 -- Recent Progress in Electrode Materials for Sodium Ion Batteries -- 1. Introduction -- 2. History and working principal of SIB -- 3. Anode Materials for SIB -- 3.1 Metal Oxide Anode Materials -- 3.2 Alloy Anode Materials -- 4. Cathode Materials for SIBs -- 4.1 Layered Oxide Cathode Materials -- 4.2 Polyanionic Cathode Materials -- Conclusion -- References -- 9 -- Electrolytes for Na-O2 Batteries: Towards a Rational Design -- 1. Introduction -- 2. Na-O2 Batteries -- 3. Instability of electrolyte -- 4. The use of additives -- 5. Outlook -- Acknowledgements -- References -- 10 -- State-of-the-Art, Future Prospects and Challenges in Sodium-Ion Battery Technology -- 1. Introduction -- 2. Background -- 3. State-of-the-art or current status of SIBs -- 4. Hurdles in SIBs -- 5. Next-generation battery research -- 5.1 SexSy-based negative electrode materials (NEMs) -- 5.2 Na3M2(PO4)2F3 [M¼Ti, Fe, V] based NEMs. , 5.3 Inclusion of fluorinated ethylene carbonate (FEC) in the electrolyte -- 5.4 Efficient cycling process by Sb in SIBs -- 5.5 SnSb as NEMs -- 6. Economic perspective of SIBs -- 6.1 Battery Performance and Cost model (BatPaC model) -- 6.2 Cost of cathode -- 6.3 Cost of anode -- 6.4 Cost of electrolyte -- 6.5 Fluctuations or variation in price -- 6.6 Limitation of BatPaC model -- 7. A materialistic outlook of SIBs -- 8. Challenges of SIBs -- 8.1 Limitations and materialistic barriers -- 8.2 Challenges of NEMs -- 9. Future opportunities -- Acknowledgment -- References -- 11 -- Conducting Polymers for Sodium-Ion Batteries -- 1. Introduction -- 2. Applications on cathode materials -- 2.1 Doped and pure conducting polymer cathodes -- 2.2 Conducting polymer-based composite cathode -- 3. Applications on anode materials -- 3.1 Doped and pure conducting polymer anodes -- 3.2 Conducting polymer-based composite anode -- Conclusions & -- Outlooks -- Acknowledgment -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Quantum dots. ; Electronic books.
    Description / Table of Contents: The book provides a thorough survey of current research in quantum dots synthesis, properties, and applications.
    Type of Medium: Online Resource
    Pages: 1 online resource (360 pages)
    Edition: 1st ed.
    ISBN: 9781644901250
    Series Statement: Materials Research Foundations Series ; v.96
    DDC: 621.38152
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Water-Electrolysis. ; Electronic books.
    Description / Table of Contents: Aiming at the generation of hydrogen from water, electrochemical water splitting represents a promising clean technology for generating a renewable energy resource. Keywords: Electrochemical Water Splitting, Renewable Energy Resource, Electrocatalysts, Oxygen Evolution Reaction (OER), Noble Metal Catalysts, Earth-Abundant Metal Catalysts, MOF Catalysts, Carbon-based Nanocatalysts, Polymer Catalysts, Transition Metal-based Electrocatalysts, Fe-based Electrocatalysts, Co-based Electrocatalysts, Ni-based Electrocatalysts, Metal Free Catalysts, Transition-Metal Chalcogenides, Prussian Blue Analogues.
    Type of Medium: Online Resource
    Pages: 1 online resource (251 pages)
    Edition: 1st ed.
    ISBN: 9781644900451
    Series Statement: Materials Research Foundations Series ; v.59
    DDC: 665.81
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Transition Metal-Based Electrocatalysts for Oxygen-Evolution Reaction beyond Ni, Co, Fe -- 1. Introduction -- 2. Towards transition metal alloys beyond Ni, Co and Fe applied for OER -- 3. Metal oxides for OER beyond Ni, Co, and Fe -- 3.1 Transition metal binary oxide-based electrocatalyst -- 3.2 Perovskites oxides electrocatalysts -- 4. Transition-metals carbides, nitrides, and phosphides applied for OER -- 4.1 Carbides -- 4.2 Nitrides -- 4.3 Phosphides -- Conclusions -- References -- 2 -- Fe-Based Electrocatalysts for Oxygen-Evolution Reaction -- 1. Introduction -- 2. Mechanism of oxygen evolution reaction -- 3. Fe-based catalysts for OER -- 3.1 Fe-based oxides catalysts -- 3.2 Fe-based (oxy)hydroxides catalysts -- 3.3 Fe-based lamellar layered double hydroxide catalysts -- 3.4 Other Fe-based composites -- Conclusions and Outlook -- References -- 3 -- Co-Based Electrocatalysts for Hydrogen-Evolution Reaction -- 1. Introduction -- 2. Various Co-based electrocatalysts -- 2.1 Co metal, alloy, and their composites -- 2.2 Co nitrides -- 2.3 Co phosphides -- 2.4 Co oxide -- 2.5 Cobalt (Co) sulfides -- 2.6 Cobal selenides -- 2.7 Binary nonmetal cobalt compounds -- Conclusions and outlook -- References -- 4 -- Metal Free Catalysts for Water Splitting -- 1. Introduction -- 1.1 Hydrogen evolution reaction (HER) -- 1.2 Oxygen evolution reaction (OER) -- 2. Factors affecting the efficiency of electrochemical water splitting -- 3. Electrochemical matrices used for determining talent of the catalyst -- 4. Electrocatalysts for overall water splitting -- 5. Carbon based metal free catalyst -- 5.1 Graphene based electrocatalysts for water splitting -- 5.2 Carbon nanotube based electrocatalysts for water splitting. , 5.3 Graphitic carbon nitride (g-C3N4) based electrocatalysts for overall water splitting -- 6. Future aspects and outlook -- Reference -- 5 -- Ni-Based Electrocatalyst for Full Water Splitting -- 1. Introduction -- 2. Water splitting -- 2.1 Brief history and basics of water splitting -- 2.2 Few parameters related to t oxygen evolution reaction, hydrogen evolution reaction and catalytic activity -- 2.3 Mechanism of electrochemical water splitting -- 2.3.1 Hydrogen evolution reaction (HER) -- 2.3.2 Oxygen evolution reaction (OER) -- 2.4 Recent advances on materials and performance of Ni based materials for overall water splitting -- 2.4.1 Ni- based oxides and hydroxides -- 2.4.2 Ni-based phosphides -- 2.4.3 Ni-based nitrides -- 2.4.4 Ni-based sulfides -- 2.4.4 Ni-based selenides -- Conclusions -- Acknowledgement -- References -- 6 -- Transition-Metal Chalcogenides for Oxygen-Evolution Reaction -- 1. Introduction -- 1.1 Mechanism of oxygen evolution reaction (OER) -- 1.2 Kinetic parameters used to find the suitable catalysts for OER -- 1.2.1 Overpotential -- 1.2.2. Exchange current density -- 1.2.3 Tafel equation and Tafel plot -- 1.2.4 Electrochemical active surface area (ECSA) -- 1.2.5 Faraday efficiency (FE) -- 1.3 Experimental methods used to study the OER behavior and stability of catalysts -- 2. Transition metal chalcogenides as replacement of state-of-art catalyst for OER -- 2.1 Transition metal sulphide for oxygen evolution reaction -- 2.2 Transition metal selenide for oxygen evolution reaction -- 2.3 Transition metal telluride for oxygen evolution reaction -- Conclusion and Future prospective -- References -- 7 -- Interface-Engineered Electrocatalysts for Water Splitting -- 1. The surface/interface mechanism in photoelectrochemical water splitting. , 2. Enhanced photoelectrochemical water splitting performance by interface-engineered electrocatalysts -- 2.1 Impurity doping -- 2.2 Surface plasmon resonance effect -- 2.3 Z-scheme system -- References -- 8 -- Application of Prussian Blue Analogues and Related Compounds for Water Splitting -- 1. Introduction -- 2. The coordination chemistry of Prussian blue analogues and other metal cyanides -- 3. Crystal structure of Prussian blue analogues and related coordination polymers -- 4. Photo-induced charge transfer in Prussian blue analogues and related solids -- 5. Electrochemical behavior of PBAs in aqueous solutions -- 6. The water splitting reaction using transition metal cyanides -- 6.1 Oxygen evolution reaction (OER) -- 6.2 Hydrogen evolution reaction (HER) -- 6.3 Use as co-catalyst in photoelectrochemical cells -- Concluding remarks -- Acknowledgments -- References -- 9 -- Ni-Based Electrocatalysts for Oxygen Evolution Reaction -- 1. Introduction -- 2. The mechanism involved in oxygen evolution reaction and judging parameters -- 3. Nickel based OER catalysts -- 3.1 Ni-hydroxide based OER catalysts -- 3.2 Ni-oxide based OER catalysts -- 3.3 Ni-sulphides and selenides for OER -- Conclusion -- Acknowledgements -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book presents new cutting-edge research findings in this field. Subjects covered include fabrication and characteristics of various electrode materials, cell design and strategies for enhancing the properties of PEC electrode materials.
    Type of Medium: Online Resource
    Pages: 1 online resource (224 pages)
    Edition: 1st ed.
    ISBN: 9781644900734
    Series Statement: Materials Research Foundations Series ; v.71
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Transition Metal Chalcogenides for Photoelectrochemical Water Splitting -- 1. Introduction -- 2. Typical structures of transition metal chalcogenides -- 3. Binary chalcogenides applied to photoelectrochemical water splitting -- 4. Transition metal-based ternary and multinary chalcogenides for photoelectrochemical water splitting -- 4.1 P-type copper-based chalcogenides -- 4.2. Silver-based chalcogenides for water splitting -- Conclusions -- References -- 2 -- Selection of Materials and Cell Design for Photoelectrochemical Decomposition of Water -- 1. Introduction -- 2. Principle and theory of water decomposition -- 3. Challenges in designing of a photoelectrochemical cell -- 4. Design configurations of PEC -- 4.1 Type 1 photo anodes -- 4.2 Type II heterojunction photomaterials -- 4.3 Type III wired type PEC tandem cells -- 4.4 Type IV wireless type PEC -- 4.5 Type V PV−EC systems -- Conclusions -- References -- 3 -- Interfacial Layer/Overlayer Effects in Photoelectrochemical Water Splitting -- 1. Introduction -- 2. PEC cell photoelectrode: Required characteristics and recent trends -- 3. Interface layering/over-layering: An effective strategy -- 4. Interface layering/over-layering of metal oxide semiconductors -- 4.1 Interface layering with BiVO4 -- 4.2 Interface layering with CuO/Cu2O -- 4.3 Interface layering with hematite (α-Fe2O3) -- 4.4 Interface layering with WO3 -- 4.5 Interface layering with TiO2 -- 5. Interface layering with carbon materials -- 6. Interface layering with low-cost non-metallic semiconductors -- 7. Interface layering/integration with metal nanoparticles -- Conclusion and future directions -- Acknowledgements -- References -- 4 -- Narrow Bandgap Semiconductors for Photoelectrochemical Water Splitting -- 1. Introduction. , 2. Narrow band gap materials as a strategy to improve photoresponse of the material -- 2.1 Bismuth sulfide (Bi2S3) -- 2.2 CuO -- 2.3 Fe2O3 -- 2.4 BiOI -- Spray Pyrolysis -- BiOI/BiOBr -- BiOI/TiO2 -- Conclusion -- References -- 5 -- Ti-based Materials for Photoelectrochemical Water Splitting -- 1. Introduction -- 2. Basic principle of PEC water splitting -- 3. Material selection for PEC water splitting -- 4. TiO2 photocatalyst for PEC water splitting -- 5. Tuning the photocatalytic of TiO2 into the visible light region -- Conclusion -- Acknowledgements -- References -- 6 -- BiVO4 Photoanodes for Photoelectrochemical Water Splitting -- 1. Introduction -- 2. Crystal and electronic band structure of BiVO4 -- 3. The band gap of monoclinic BiVO4 -- 3.1 BiVO4 photoanode band alignment at a liquid interface -- 4. Influence of crystal facet -- 5. Carrier dynamics in BiVO4 -- 6. Intrinsic defects/Oxygen vacancies in BiVO4 -- 7. Polarons in BiVO4 -- 8. Doping BiVO4 -- 8.1 W doping into BiVO4 -- 8.2 Mo doping into BiVO4 -- 8.3 Other dopants in BiVO4 -- 8.4 Lanthanide ion doping into BiVO4 -- 8.5 Codoping in BiVO4 (multiple ion doping) -- 9. The side of illumination on BiVO4 photoanode -- 10. Photo-charged BiVO4 -- 11. Hole blocking layer for BiVO4 -- 12. Catalyst coatings on BiVO4 photoanode -- 13. Plasmon-induced resonant energy transfer -- Conclusions and future perspective -- References -- 7 -- Noble Materials for Photoelectrochemical Water Splitting -- 1. Introduction -- 2. Fundamental properties of noble metals for photocatalytic activity -- 2.1 Fundamentals of the Localized Surface Plasmon Resonance (LSPR) -- 2.2 Schottky junction -- 3. Photoelectrodes materials -- 3.1 Titania (TiO2) -- 3.2 Haematite (Fe2O3) -- 3.3 Zinc oxide (ZnO) -- 4. Fundamental role of noble materials in PEC water splitting -- 4.1 Platinum (Pt) -- 4.2 Gold (Au) -- 4.3 Silver (Ag). , 4.4 Palladium (Pd) -- 4.5 Copper (Cu) -- 5. Noble bimetallic nanocomposites for PEC water splitting -- 5.1 Au-Pt bimetallic nanocomposites -- 5.2 Au-Pd bimetallic nanocomposites -- 5.3 Au-Ag bimetallic nanocomposites -- 5.4 Ag-Cu bimetallic nanocomposites -- 6. A brief note on bimetallic non-noble NPs for photoelectrochemical (PEC) water splitting -- Conclusion -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Singapore :Springer Singapore Pte. Limited,
    Keywords: Microbial biotechnology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (734 pages)
    Edition: 1st ed.
    ISBN: 9789811622250
    Series Statement: Environmental and Microbial Biotechnology Series
    Language: English
    Note: Intro -- Contents -- About the Editors -- 1: Application of Endophyte Microbes for Production of Secondary Metabolites -- 1.1 Introduction -- 1.2 Origin and Evolution of Endophytes -- 1.3 Endophyte Diversity -- 1.4 Close Relationship Between Endophytes and Medicinal Herbs -- 1.5 Endophytes and Secondary Metabolites -- 1.6 Terpenoids -- 1.7 Phenolics -- 1.8 Flavonoids -- 1.9 Alkaloids -- 1.10 Glycosides -- 1.11 Saponins -- 1.12 Polyketides -- 1.13 Coumarins -- 1.14 Steroids -- 1.15 Conclusion and Perspectives -- References -- 2: Application of Microbes in Synthesis of Electrode Materials for Supercapacitors -- 2.1 Introduction -- 2.1.1 Basics of Supercapacitors -- 2.1.2 Electrode Materials for Supercapacitors -- 2.1.3 Why Microbes in Energy Storage Devices? -- 2.2 Different Microbes Commonly Used in EES -- 2.2.1 Bacteria -- What so Special About Bacterial Cellulose? -- 2.2.2 Viruses -- 2.2.3 Fungi -- 2.3 Microbes as Bio-templates for Energy Storage Materials -- 2.3.1 Bacteria as Bio-templates -- 2.3.2 Fungi as Bio-templates -- 2.3.3 Viruses as Bio-templates -- 2.4 Microbe-Based Carbon Materials as Supporting Matrix -- 2.5 Microbe-Derived Carbons for Energy Storage Applications -- 2.5.1 Bacteria-Derived Carbons for Energy storage applications -- 2.5.2 Fungi-Derived Carbons for Energy Storage Applications -- 2.5.3 Microbe-Derived Carbon-Based Nanocomposites as Energy Storage Materials -- 2.6 Conclusion and Future Prospects -- References -- 3: Application of Microbes in Climate-Resilient Crops -- 3.1 Introduction -- 3.2 Heat Stress Tolerance -- 3.3 Cold Stress Tolerance -- 3.4 Submergence Stress Tolerance -- 3.5 Salinity and Drought Stress Tolerance -- 3.6 Conclusion and Future Perspectives -- References -- 4: Application of Microbes in Biotechnology, Industry, and Medical Field -- 4.1 Overview of Microorganisms -- 4.1.1 Prokaryotic Microorganisms. , Bacteria -- Archaea -- 4.1.2 Eukaryotic Microorganisms -- Protist -- Fungi -- Virus -- 4.2 Principles -- 4.2.1 Screening for Microbial Products -- Screening Methods -- 4.2.2 Microbial Bioprocess -- Optimization -- Sustainable Technologies -- 4.2.3 Enzymology -- 4.2.4 Gene Manipulation -- Recombinant DNA Technology -- 4.3 Applications -- 4.3.1 Industry -- Food-Fermented Foods -- Improvement of Food Quality -- Improvement Efficiency and Productivity of Process -- Food Additives -- Agroindustry -- Pest in Crops -- Crop Yield and Product Quality -- Construction -- Chemical Industry -- Cleaning -- Bioremediation -- Chemical-Based Cleaning Products -- 4.3.2 Environment -- Wastewater Treatment -- Solid Hazardous Treatment -- Composting -- Anaerobic Digestion -- Metal Recovery -- Microbial Biofuels -- Biomethanol -- Bioethanol -- Butanol -- Biodiesel -- Medical Biotechnology -- 4.4 Conclusions -- References -- 5: Applications of Microbes for Energy -- 5.1 Introduction -- 5.2 Microbes for Energy Applications -- 5.2.1 Microbes for Fuel Cells -- 5.2.2 Microbes for Hydrogen Production -- 5.2.3 Microbes for Methane Production -- 5.2.4 Microbes for Ethanol Production -- 5.2.5 Microbes for Biodiesel Production -- 5.2.6 Microbes for Electrosynthesis -- 5.2.7 Microbes for Energy Storage -- 5.3 Conclusion and Future Remarks -- References -- 6: Applications of Microbes in Electric Generation -- 6.1 Introduction -- 6.2 Different BFC Types -- 6.2.1 DET-BFC -- 6.2.2 MET-BFC -- 6.2.3 EBFC -- 6.2.4 MFC -- 6.3 Electrocatalytic Nanomaterials for EBFC -- 6.3.1 Carbon Materials -- 6.3.2 Metal Nanoparticles -- 6.3.3 Composite Materials -- 6.4 Electrocatalytic Nanomaterials for MFC -- 6.4.1 Electrocatalytic Nanomaterials for MFC Anode -- Carbon Nanomaterials -- Metal Nanomaterials -- Conductive Polymers -- 6.4.2 Electrocatalytic Nanomaterials for MFC Cathode. , Noble Metal-Based Materials -- Non-noble Metal-Based Materials -- 6.5 Summary and Prospect -- References -- 7: Application of Microbes in Household Products -- 7.1 Introduction -- 7.2 Household Products -- 7.2.1 Cleaning Product -- 7.2.2 Cosmeceutical -- 7.2.3 Textiles -- 7.2.4 Others -- 7.3 Benefits and Challenges -- 7.4 Conclusion -- References -- 8: Electricity Generation and Wastewater Treatment with Membrane-Less Microbial Fuel Cell -- 8.1 Introduction -- 8.2 Electricity Generation -- 8.2.1 Anode and Cathode Electrodes -- Cathode Electrode -- Anode Electrode -- 8.2.2 Effect of Operating Temperature -- 8.2.3 Effect of pH -- 8.2.4 Effect of Substrate Pretreatment -- 8.2.5 Effect of Reactor Design -- 8.2.6 Effect of Electrode Surface Area and Electrode Spacing -- 8.2.7 Effect of Substrate Conductivity -- 8.3 Water Treatment (Substrate) -- 8.4 Conclusion -- References -- 9: Microbes: Applications for Power Generation -- 9.1 Introduction -- 9.2 Reduction of the Environmental and Air Pollution -- 9.2.1 Natural Aerosols from Vegetation -- 9.2.2 Landfill Gas -- 9.2.3 Biogas -- Using Leachate of the Waste -- 9.2.4 Biodiesel -- 9.2.5 Bioethanol -- Using Celluloses -- Using Starch -- Using Sugar -- 9.2.6 Sewer -- 9.3 Energy Efficiency -- 9.3.1 Microorganisms -- 9.3.2 Microbial Fuel Cells -- Using Natural Fermentation -- Using Biomass -- Using Domestic Wastewater -- Using Industrial Wastewater -- Using Sewage -- Using Crop Residue -- Using Mud -- Using Biogas Slurry -- 9.3.3 Newer Microbial Fuel Cells -- Using Electronophore (Traditional) -- Using Biochar (Latest) -- 9.3.4 Biogas -- Using Sewage -- Using Animal Waste -- Using Animal Manure -- 9.3.5 Biohydrogen -- 9.4 Availability -- 9.4.1 Biomass -- 9.5 Clean Energy -- 9.5.1 Algae -- 9.5.2 Microbial Biophotovoltaic Cells -- Using Algae -- Using Cyanobacteria -- Using Plant Rhizodeposition. , 9.6 Sustainability -- 9.6.1 Biomass -- Crop Residue -- 9.6.2 Camphor -- 9.7 Conclusion -- 9.8 Future Approach -- References -- 10: Applications of Microbes in Food Industry -- 10.1 Introduction -- 10.2 Applications of Microorganisms in Food Industry -- 10.2.1 Baking Industry Applications -- 10.2.2 Alcohol and Beverage Industry Applications -- 10.2.3 Enzyme Production and Its Applications -- 10.2.4 Production of Amino Acids -- 10.2.5 Microbial Detergents as Food Stain Removers -- 10.2.6 Dairy Industry Applications -- 10.2.7 Pigment Production -- 10.2.8 Organic Acid Production -- 10.2.9 Aroma and Flavouring Agents Production -- 10.2.10 Miscellaneous Applications -- Xanthan Gum Production -- Ripening Process -- Food Grade Paper Production -- Single-Cell Protein -- Applications in Other Foods -- 10.3 Summary -- References -- 11: Applications of Microbes in Human Health -- 11.1 Introduction -- 11.2 Human Microbiome -- 11.3 Probiotics -- 11.4 Properties of Probiotics -- 11.5 Probiotics Mechanism of Action -- 11.6 Oral Probiotics -- 11.6.1 Probiotics in Preventing Dental Caries Progression -- 11.6.2 Probiotics in Prevention of Gingival Inflammation -- 11.6.3 Probiotics in Prevention of Periodontal Diseases -- 11.7 Probiotics in Halitosis -- 11.7.1 Probiotics in Oral Mucositis -- 11.7.2 Benefits of Probiotics in General Health -- 11.7.3 Anti-Inflammatory Property -- 11.8 Antimicrobial Properties -- 11.9 Antioxidant Properties -- 11.10 Anticancer Properties -- 11.10.1 Probiotics in Treatment of Upper Respiratory Tract Infections -- 11.10.2 Probiotics in Treatment of Urogenital Infections -- 11.10.3 Probiotics in Improvement of Intestinal Health -- 11.10.4 Probiotics in Treatment of Chemotherapy and Radiotherapy Induced Diarrhea -- 11.10.5 Probiotics in Treatment of Anemia -- 11.11 Treatment and Prevention of Obesity -- 11.12 Probiotics as Immunomodulator. , 11.13 Conclusion -- References -- 12: Applications of Microbes in Soil Health Maintenance for Agricultural Applications -- 12.1 Introduction -- 12.2 Microbial Sources -- 12.2.1 Microalgae and Cyanobacteria -- 12.2.2 Fungi -- 12.2.3 Bacteria -- 12.3 Applications of Microbes -- 12.3.1 Plant Growth Regulators -- 12.3.2 Volatile Organic Compounds (VOCs) -- 12.3.3 Biotic Elicitors -- 12.3.4 Bioremediation -- 12.3.5 Biocontrol -- 12.3.6 Different Types of Microbes -- 12.4 Healthy Soil and Eco-Friendly Environment -- 12.4.1 Biofertilizers -- 12.4.2 Biopesticides -- 12.4.3 Bioherbicides -- 12.4.4 Bioinsecticides -- 12.5 Microbiome and Sustainable Agriculture -- 12.5.1 Benefits of Mycorrhizal Fungi -- 12.5.2 Soil and Environmental Health -- 12.6 Conclusion -- References -- 13: Co-functional Activity of Microalgae: Biological Wastewater Treatment and Bio-fuel Production -- 13.1 Introduction -- 13.2 Wastewater Treatment Using Microalgae -- 13.2.1 Wastewater Composition -- 13.2.2 Nutrient Removal -- Influence of Additives in Wastewater on Nutrient Removal by Microalgae -- 13.2.3 Heavy Metal Removal -- 13.3 Microalgae Cultivation and Harvesting -- 13.3.1 Open Ponds -- 13.3.2 Closed System (Photobioreactor PBRs) -- 13.3.3 Hybrid System -- 13.3.4 Harvesting Techniques -- 13.4 Bio-refinery -- 13.5 Bio-fuel Production Using Microalgae -- 13.5.1 Thermochemical Conversion -- 13.5.2 Biochemical Conversion/Fermentation -- 13.5.3 Chemical Reaction/Transesterification -- 13.5.4 Direct Combustion -- 13.6 Sustainability of Energy from Microalgae -- 13.7 Conclusions -- References -- 14: Microalgae Application in Chemicals, Enzymes, and Bioactive Molecules -- 14.1 Introduction -- 14.2 Microalgae-Based Products -- 14.2.1 Chemical Products -- 14.2.2 Bioactive Molecules -- 14.3 Microalgae Enzymes -- 14.4 Industrial Applications of Microalgae. , 14.5 Conclusions and Future Perspectives.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: The book presents theoretical insights, characterization tools and mechanisms of green corrosion inhibitors.
    Type of Medium: Online Resource
    Pages: 1 online resource (242 pages)
    Edition: 1st ed.
    ISBN: 9781644901052
    Series Statement: Materials Research Foundations Series ; v.86
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Theoretical Insights in Green Corrosion Inhibitors -- 1. Introduction -- 2. Theoretical methods used in green corrosion inhibitors -- 2.1 Quantum chemistry methods -- 2.2 Quantitative structure-activity relationships -- 2.3 Molecular dynamics simulation -- 3. The progress of theoretical study in green corrosion inhibitors -- 3.1 The behavior of green corrosion inhibitor studied by combination of quantum chemistry and QSAR -- 3.1.1 Carbon steel inhibitors -- 3.1.2 Copper inhibitors -- 3.2 The performance of green corrosion inhibitor studied by combination of molecular simulation and quantum chemistry -- 3.2.1 Carbon steel inhibitor -- 3.2.2 Aluminum inhibitors -- 3.2.3 Copper inhibitors -- 3.3 The behavior of green corrosion inhibitor studied by combination of molecular simulation, quantum chemistry and QSAR -- 3.3.1 Carbon steel inhibitors -- 3.3.2 Copper inhibitors -- Conclusions -- Acknowledgments -- References -- 2 -- Effect of Natural Sources on the Corrosion Inhibition -- 1. Introduction -- 2. Green corrosion inhibitors -- 2.1 Protection of iron based surfaces via green corrosion inhibitors -- 2.1.1 Protection of iron surfaces via green corrosion inhibitors -- 2.1.2 Protection of mild steel surfaces via green corrosion inhibitors -- 2.1.3 Protection of steel surfaces via green corrosion inhibitors -- 2.1.4 Protection of carbon steel surfaces via green corrosion inhibitors -- 2.1.5 Protection of steel rebar surfaces via green corrosion inhibitors -- 2.2 Protection of aluminum surfaces via green corrosion inhibitors -- 2.3 Protection of copper surfaces via green corrosion inhibitors -- 2.4 Protection of tin surfaces via green corrosion inhibitors -- 2.5 Green corrosion inhibitors resources -- 3. Anti-corrosion mechanism (for natural inhibitors). , 3.1 Anodic, cathodic and mixed type inhibition -- 4. Corrosion inhibitors testing -- 5. Economic and industrial opportunities -- References -- 3 -- Green Inhibitors for Biocorrosion and Prevention -- 1. Introduction -- 1.1 The portability of the metal to the corrosion -- 1.2 The factors affecting the speed of corrosion -- 1.3 Types of corrosions -- 1.3.1 Pure chemical corrosion -- 1.3.2 Electrochemical corrosion -- 1.3.3 Homogeneous (general) corrosion -- 1.3.4 Local corrosion -- 1.3.5 Stress - corrosion cracking -- 1.3.6 Galvanic corrosion -- 1.3.7 Erosion corrosion (EC) -- 1.3.8 Crevice corrosion -- 1.3.9 Pitting corrosion (PC) -- 1.3.10 Exfoliation corrosion -- 1.3.11 Selective leaching -- 1.3.12 Nonmetallic corrosion -- 1.3 Corrosion of cement -- 1.5 Corrosion of organic materials -- 1.6 Environment factors -- 1.6.1 Effect of oxygen and oxidants -- 1.6.2 Effect of pH -- 1.6.2 Effect of anions and cations -- 1.7 Anti-corrosion methods -- 1.7.1 The green impediments for corrosion -- 1.7.2 Determination of green corrosion inhibitors based on ionic fluids -- 1.7.3 Corrosion suppressions from the biological waste -- Conclusion -- References -- 4 -- Electrochemical Studies of Green Corrosion Inhibitors -- 1. Introduction -- 2. Corrosion inhibitors -- 2.1 Green corrosion inhibitors -- 2.1.1 Natural products -- 2.1.2 Amino acids -- 2.1.3 Rare earth metal compounds -- 2.1.4 Recently used green inhibitors -- 3. Characterization techniques -- 3.1 Polarization methods -- 3.1.1 Linear polarization resistance method -- 3.1.2 Potentiodynamic-galvanodynamic polarization -- 3.1.3 Cyclic potentiodynamic polarization -- 3.1.4 Cyclic galvano-staircase polarization -- 3.1.5 Conversion of Icorr (from polarization methods) to corrosion rates -- 3.1.6 Limitations associated with polarization methods -- 3.2 Electrochemical impedance spectroscopy (EIS). , 3.2.1 Interpretation of results (Nyquist & -- Bode plots) -- 3.2.2 Equivalent circuits -- 3.3 Electrochemical Noise (EN) measurements -- 3.4 Electrochemical Quartz Crystal Microbalance (EQCM) -- Concluding remark -- References -- 5 -- Green Corrosion Inhibitors for Technological Applications -- 1. Introduction -- 2. Green corrosion inhibitors -- 3. Technological applications of green corrosion inhibitors -- 3.1 Oil and gas sector -- 3.2 Reinforced concrete -- 3.3 Acid pickling industry -- 3.4 Coatings -- 3.5 Aircraft industry -- 3.6 Water industry -- Conclusion -- Acknowledgment -- References -- 6 -- Pyrazine Derivatives as Green Corrosion Inhibitors -- 1. Introduction -- 2. Pyrazine and its derivative as prominent corrosion inhibitor for metals and alloys in corrosive media -- 3. Adsorption mechanism -- Further aspects -- Conclusion -- Abbreviations -- Acknowledgement -- References -- 7 -- Biological Corrosion Inhibitors for Concrete -- 1. Introduction -- 2. Biological Corrosion Inhibitors -- 2.1 Microbial -- 2.1.1 Bacterial -- 2.1.1.1 Ureolytic -- 2.1.1.2 Non-ureolytic -- 2.1.2 Nitrate reducing bacteria -- 2.1.3 Biomolecules -- 2.1.4 Deoxyribonucleic acid (DNA) -- 2.1.5 Mussel adhesive proteins -- 2.1.6 Fungus -- 2.2 Botanical -- 2.2.1 Extract of tree/plant leaves -- 2.2.2 Bark extract of trees/plants -- 2.2.3 Seeds or grains -- 2.2.4 Plant roots extracts -- 2.2.5 Plants mucilage -- 2.2.6 Algae -- 3. Comparison -- Conclusion -- References -- 8 -- Green Corrosion Inhibitor for Electronics -- 1. Introduction -- 2. Causes and factors for corrosion in electronics -- 2.1 Contaminant gases affect the manufacturing areas -- 2.2 Other problems faced in manufacturing process -- 2.3 Effects of ammonia -- 2.4 Effects of ozone, boron and other volatile organic compounds -- 2.5 Airborne contamination in various sector -- 2.5.1 Telecom industry. , 2.5.2 Distributed control system (DCS) -- 2.5.3 Data centers -- 3. Metals or specific alloys component for electronics -- 4. Electronic component susceptibility towards corrosion and failure analysis -- 4.1 Printed circuit board -- 4.2 Contact and connector -- 4.2.1 Pore corrosion in electrical contacts -- 4.2.2 Fretting corrosion of electronic connectors -- 4.3 Integrated circuits -- 4.4 Solder corrosion: the corrosive effect of soldering flux -- 4.5 Hermetic packages -- 5. Reliability and cleanliness -- 6. Electronics corrosion protection -- 7. Vapor phase corrosion inhibitor (VPCI) technology -- 8. Vapor pressure measurement by various methods -- 8.1 Regnault dynamic method -- 8.2 Boiling point determination method -- 8.3 Knudsen effusion method -- 8.4 Microbalance method -- 8.5 Torsion effusion method -- 9. Effect of temperature on the vapor pressure -- 10. Effect of pH -- 11. Types of vapor phase corrosion inhibitors (VPCI) -- 12. Analysis of corrosion by different method -- 12.1 Vapor pressure determination -- 12.2 Weight loss method -- 12.3 Esckhe method -- 12.4 Salt spray method -- 13. Advantages of VPCI -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Millersville, PA :Materials Research Forum LLC,
    Keywords: Electronic books.
    Description / Table of Contents: This book focuses on aerogels and their applications in such areas as energy storage, thermal storage, catalysis, water splitting and environmental remediation.
    Type of Medium: Online Resource
    Pages: 1 online resource (282 pages)
    Edition: 1st ed.
    ISBN: 9781644900994
    Series Statement: Materials Research Foundations Series ; v.84
    Language: English
    Note: Intro -- front-matter -- Table of Contents -- Preface -- 1 -- Nanocellulose Aerogels -- 1. Introduction -- 2. Production processes of nanocellulose aerogels -- 3. Properties of nanocellulose aerogels -- 4. Applications of nanocellulose aerogels -- 4.1 Materials absorbents -- 4.2 Gas filters and membranes -- 4.3 Packaging materials -- 4.4 Energy storage systems and electrical devices -- 4.5 Thermal insulation and fire-retardant materials -- 4.6 Pharmaceutical and biomedical applications -- 5. Final considerations -- References -- 2 -- Porous Aerogels -- 1. Porous aerogel history -- 2. Aerogel pore classification -- 3. Inorganic-silica based aerogels -- 3.1 Properties of silica-based aerogel -- 3.1.1 Texture -- 3.1.2 Thermal properties -- 3.1.3 Optical properties -- 3.1.4 Entrapment, release, sorption, and storage properties -- 4. Inorganic-nonsilicate aerogels -- 4.1 ZrO2 aerogels -- 4.1.1 ZrO2 aerogels in catalysis -- 4.1.2 ZrO2 aerogels in ceramics -- 4.1.3 ZrO2 aerogels in solid oxide fuel cells -- 4.2 TiO2 aerogels -- 5. Organic-natural/biogels -- 5.1 Polysaccharides aerogels -- 5.2 Chitosan aerogel -- 5.3 Pectin aerogel -- 5.4 Alginate aerogel -- 5.5 κ -Carrageenan aerogel -- 5.6 Starch aerogel -- 5.7 Curdlan aerogel -- 5.8 Cellulose aerogels -- 5.8.1 Cellulose aerogel monoliths -- 5.8.2 Nanostructured cellulose filaments in textile -- 6. Resorcinol-formaldehyde aerogels -- 7. Composite aerogels -- 7.1 Polymer-crosslinked aerogels -- 7.2 Effect of polymer addition on aerogel fragility -- 8. Exotic aerogels -- 8.1 Chalcogenide aerogels -- 8.1.1 Chalcogenide aerogels formation by thiolysis: GeS2 -- 8.1.2 Chalcogenide aerogels formation by cluster-linking -- 8.1.3 Chalcogenide aerogels formation by nanoparticle assembly -- 9. Conducting polymer aerogel -- 9.1 Conducting polymer aerogels- A property prospective -- 9.1.1 PEDOT aerogels. , 9.1.2 Polypyrrole (Ppy) aerogels -- 9.1.3 Polyaniline (PANi) aerogels -- 10. Sonogels -- 11. Graphene aerogel -- 11.1 Preparation of reduced graphene oxide aerogels -- 12. Carbon nanotubes (CNTs) aerogel -- 13. Hybrid aerogel -- 13.1 Class-I hybrid composites -- 13.2 Class-II hybrid composite -- 14. Application of porous aerogel -- 14.1 Thermal insulation -- 14.2 Removal of pollutants -- 14.3 Elimination of solid particle from gases -- 14.4 CO2 capture -- 14.5 Volatile organic compounds/catalysis -- 14.6 Water treatment -- 14.6.1 Oils in water -- 14.6.2 Wastewater and brackish water treatment -- 14.7 Biomedical applications -- 14.7.1 Aerogels for the administration of medicines -- 14.7.2 Tissue engineering -- 14.7.3 Biosensing -- References -- 3 -- Hybrid Silica Aerogel -- 1. Introduction -- 2. Hybrid silica aerogel -- 2.1 Polymer-silica aerogel -- 2.2 Biomolecules-silica aerogel -- 2.3 Graphene-silica aerogel -- 3. Final remarks -- Acknowledgements -- References -- 4 -- Silica Aerogel -- 1. Introduction -- 2. Synthesis methodology -- 2.1 Bare silica aerogels -- 2.2 Modified silica aerogels -- 3. Physico-chemical properties and applications -- 3.1 Thermal insulating application -- 3.2 Optical property application -- 3.3 Electronic application -- 3.4 Acoustic insulation applications -- 3.5 Biomedical applications -- 3.6 Environmental applications -- 3.7 Others applications -- 3.7.1 Space and detector -- 3.7.2 Oil spill clean-up -- 3.7.3 Aerospace -- Conclusions and future prospects -- References -- 5 -- Carbon Aerogels -- 1. Introduction -- 2. Types of carbon aerogels -- 2.1 Low flexible-carbon aerogel -- 2.2 Super flexible-carbon aerogel -- 2.3 Carbon nano tube aerogels -- 2.4 Graphene nano aerogel -- 2.5 Nano-diamond aerogel -- 2.6 Ni-doped carbon aerogel -- 2.7 Pt, Pd, Ag and Ru-doped carbon aerogel -- 2.8 Ce, Zr-based carbon aerogel. , 3. General characteristics and properties -- 3.1 Bulk density and porosity -- 3.2 Backbone density -- 3.3 Backbone connectivity -- 3.4 Pore connectivity -- 3.5 Pore size -- 3.6 Thermal properties -- 3.7 Electrical properties -- 3.8 Electrochemical properties -- 3.9 Mechanical properties -- 3.10 Gas-transport properties -- 3.11 Optical properties -- 4. Applications -- 4.1 Electrochemical field -- 4.2 Hydrogen storage -- 4.3 Catalyst support -- 4.4 Thermal insulation -- 4.5 Adsorbent for waste water treatment -- 4.6 Photocatalyst for waste water treatment -- 4.7 Sensor application -- Conclusions -- References -- 6 -- Magnetic Aerogels -- 1. Introduction -- 2. Cellulose magnetic aerogels -- 3. Magnetic graphene aerogel -- 4. Carbon magnetic aerogel -- 5. Magnetic silica aerogels -- 6. Magnetic pectin aerogel -- Conclusions -- Acknowledgements -- References -- 7 -- Properties of Aerogels -- 1. Introduction -- 2. Structure -- 3. Thermal properties -- 3.1 Silica aerogels -- 3.2 Organic and polymeric aerogels -- 3.3 Carbon aerogels -- 4. Electrical properties -- 4.1 Aerogels with low conductivity -- 4.2 Low dielectric constant materials -- 4.3 Aerogels with high conductivity -- 5. Optical properties -- 5.1 Radiators in Cherenkov counters -- 5.2 Fiber optics -- 5.3 Non reflective materials -- 6. Mechanical properties -- 7. Acoustic properties -- 8. Biocompatibility -- Conclusion -- Acknowledgements -- References -- 8 -- Tailor-Made Aerogels -- 1. Introduction -- 2. Existing and potential applications of aerogels -- 2.1 Pore engineering -- 2.2 Customizable surface and coating -- 2.3 Hybrid aerogels (HAgs): Influence of the sol-gel process on final properties -- 3. Applications of Tailor-made aerogels -- Conclusions -- Acknowledgments -- References -- 9 -- Aerogels Envisioning Future Applications -- 1. Introduction -- 2. Future applications of bioaerogels. , 2.1 Bioaerogels applied as functional foods -- 2.2 Bioaerogels applied as thickeners and stabilizers -- 2.3 Bioaerogels applied as medicines and scaffolding in tissue repair -- 3. Future applications of polymeric aerogel -- 3.1 Polymeric aerogel as impact absorbing materials -- 3.2 Polymeric aerogels used as catalyst supports -- 3.3 Polymeric aerogels can be used as aerospace components -- 4. Future applications of carbon aerogel -- 4.1 Future applications of carbon aerogels as photocatalytic components, electrodes and supercapacitor -- 4.2 Materials against electromagnetic interference, lipid adsorbents and scaffolds for polymers -- 5. Future applications of inorganic aerogels -- 5.1 Inorganic aerogels used as fuel cells -- 5.2 Inorganic aerogels used as catalysts -- Conclusion -- Acknowledgements -- The authors thank the Coordination for the Improvement of Higher Education Personnel (CAPES) and National Council of Scientific and Technological Development (CNPq) for funding this research. -- References -- 10 -- Recent Patents on Aerogels -- 1. Introduction -- 2. Applications -- 2.1 Patents on aerogel generators(WO 2004/022242 Al) -- 2.2 Aerogel blanket and its production (PCT/US2014/022919) -- 2.3 Cellulose aerogels PCT/GB2010/051542 -- 2.4 Some miscellaneous patents -- Acknowledgments -- References -- 11 -- State-of-the-Art and Prospective of Aerogels -- 1. Introduction -- 2.1 Synthesis of aerogels -- 3. State-of-the-art of aerogel -- 3.1 State-of-the-art properties of aerogel -- 3.2 State-of-the-art of preparation of aerogel -- 4. Future prospective of aerogel -- 4.1 Thermal insulation -- 4.2 Drug delivery -- 4.3 Energy storage device -- Acknowledgments -- References -- back-matter -- Keyword Index -- About the Editors.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...