GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Viruses, MDPI AG, Vol. 11, No. 12 ( 2019-12-16), p. 1164-
    Abstract: Zika virus (ZIKV) was first discovered in 1947 in Uganda but was not considered a public health threat until 2007 when it found to be the source of epidemic activity in Asia. Epidemic activity spread to Brazil in 2014 and continued to spread throughout the tropical and subtropical regions of the Americas. Despite ZIKV being zoonotic in origin, information about transmission, or even exposure of non-human vertebrates and mosquitoes to ZIKV in the Americas, is lacking. Accordingly, from February 2017 to March 2018, we sought evidence of sylvatic ZIKV transmission by sampling whole blood from approximately 2000 domestic and wild vertebrates of over 100 species in West-Central Brazil within the active human ZIKV transmission area. In addition, we collected over 24,300 mosquitoes of at least 17 genera and 62 species. We screened whole blood samples and mosquito pools for ZIKV RNA using pan-flavivirus primers in a real-time reverse-transcription polymerase chain reaction (RT-PCR) in a SYBR Green platform. Positives were confirmed using ZIKV-specific envelope gene real-time RT-PCR and nucleotide sequencing. Of the 2068 vertebrates tested, none were ZIKV positive. Of the 23,315 non-engorged mosquitoes consolidated into 1503 pools tested, 22 (1.5%) with full data available showed some degree of homology to insect-specific flaviviruses. To identify previous exposure to ZIKV, 1498 plasma samples representing 62 species of domestic and sylvatic vertebrates were tested for ZIKV-neutralizing antibodies by plaque reduction neutralization test (PRNT90). From these, 23 (1.5%) of seven species were seropositive for ZIKV and negative for dengue virus serotype 2, yellow fever virus, and West Nile virus, suggesting potential monotypic reaction for ZIKV. Results presented here suggest no active transmission of ZIKV in non-human vertebrate populations or in alternative vector candidates, but suggest that vertebrates around human populations have indeed been exposed to ZIKV in West-Central Brazil.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Viruses, MDPI AG, Vol. 12, No. 4 ( 2020-03-26), p. 364-
    Abstract: In the last decade, Flaviviruses such as yellow fever (YFV) and Zika (ZIKV) have expanded their transmission areas. These viruses originated in Africa, where they exhibit both sylvatic and interhuman transmission cycles. In Brazil, the risk of YFV urbanization has grown, with the sylvatic transmission approaching the most densely populated metropolis, while concern about ZIKV spillback to a sylvatic cycle has risen. To investigate these health threats, we carried out extensive collections and arbovirus screening of 144 free-living, non-human primates (NHPs) and 5219 mosquitoes before, during, and after ZIKV and YFV outbreaks (2015–2018) in southeast Brazil. ZIKV infection was not detected in any NHP collected at any time. In contrast, current and previous YFV infections were detected in NHPs sampled between 2017 and 2018, but not before the onset of the YFV outbreak. Mosquito pools screened by high-throughput PCR were positive for YFV when captured in the wild and during the YFV outbreak, but were negative for 94 other arboviruses, including ZIKV, regardless of the time of collection. In conclusion, there was no evidence of YFV transmission in coastal southeast Brazil before the current outbreak, nor the spread or establishment of an independent sylvatic cycle of ZIKV or urban Aedes aegypti transmission of YFV in the region. In view of the region’s receptivity and vulnerability to arbovirus transmission, surveillance of NHPs and mosquitoes should be strengthened and continuous.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Viruses, MDPI AG, Vol. 14, No. 12 ( 2022-12-15), p. 2805-
    Abstract: Evidence of sylvatic yellow fever was first reported in Atlantic Forest areas in Espírito Santo, Brazil, during a yellow fever virus (YFV) outbreak in 1931. An entomological survey was conducted in six forest sites during and after an outbreak reported ~80 years after the last case in the area. Among 10,658 mosquitoes of 78 species, Haemagogus leucocelaenus, and Hg. janthinomys/capricornii were considered the main vectors as they had a relatively high abundance, co-occurred in essentially all areas, and showed high YFV infection rates. Sabethes chloropterus, Sa. soperi, Sa. identicus, Aedes aureolineatus, and Shannoniana fluviatilis may have a secondary role in transmission. This is the first report of Sa. identicus, Ae. aureolineatus, and Sh. fluviatilis infected with YFV. Our study emphasizes the importance of entomological monitoring and maintenance of high vaccination coverage in receptive areas to YFV transmission.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Computation, MDPI AG, Vol. 9, No. 12 ( 2021-11-29), p. 127-
    Abstract: Robotics navigation and perception for forest management are challenging due to the existence of many obstacles to detect and avoid and the sharp illumination changes. Advanced perception systems are needed because they can enable the development of robotic and machinery solutions to accomplish a smarter, more precise, and sustainable forestry. This article presents a state-of-the-art review about unimodal and multimodal perception in forests, detailing the current developed work about perception using a single type of sensors (unimodal) and by combining data from different kinds of sensors (multimodal). This work also makes a comparison between existing perception datasets in the literature and presents a new multimodal dataset, composed by images and laser scanning data, as a contribution for this research field. Lastly, a critical analysis of the works collected is conducted by identifying strengths and research trends in this domain.
    Type of Medium: Online Resource
    ISSN: 2079-3197
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2723192-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Chemosensors, MDPI AG, Vol. 10, No. 11 ( 2022-11-05), p. 460-
    Abstract: Total white blood cells count is an important diagnostic parameter in both human and veterinary medicines. State-of-the-art is performed by flow cytometry combined with light scattering or impedance measurements. Spectroscopy point-of-care has the advantages of miniaturization, low sampling, and real-time hemogram analysis. While white blood cells are in low proportions, while red blood cells and bilirubin dominate spectral information, complicating detection in blood. We performed a feasibility study for the direct detection of white blood cells counts in canine blood by visible-near infrared spectroscopy for veterinary applications, benchmarking current chemometrics techniques (similarity, global and local partial least squares, artificial neural networks and least-squares support vector machines) with self-learning artificial intelligence, introducing data augmentation to overcome the hurdle of knowledge representativity. White blood cells count information is present in the recorded spectra, allowing significant discrimination and equivalence between hemogram and spectra principal component scores. Chemometrics methods correlate white blood cells count to spectral features but with lower accuracy. Self-Learning Artificial Intelligence has the highest correlation (0.8478) and a small standard error of 6.92 × 109 cells/L, corresponding to a mean absolute percentage error of 25.37%. Such allows the accurate diagnosis of white blood cells in the range of values of the reference interval (5.6 to 17.8 × 109 cells/L) and above. This research is an important step toward the existence of a miniaturized spectral point-of-care hemogram analyzer.
    Type of Medium: Online Resource
    ISSN: 2227-9040
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2704218-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Robotics, MDPI AG, Vol. 11, No. 6 ( 2022-11-27), p. 136-
    Abstract: Object identification, such as tree trunk detection, is fundamental for forest robotics. Intelligent vision systems are of paramount importance in order to improve robotic perception, thus enhancing the autonomy of forest robots. To that purpose, this paper presents three contributions: an open dataset of 5325 annotated forest images; a tree trunk detection Edge AI benchmark between 13 deep learning models evaluated on four edge-devices (CPU, TPU, GPU and VPU); and a tree trunk mapping experiment using an OAK-D as a sensing device. The results showed that YOLOR was the most reliable trunk detector, achieving a maximum F1 score around 90% while maintaining high scores for different confidence levels; in terms of inference time, YOLOv4 Tiny was the fastest model, attaining 1.93 ms on the GPU. YOLOv7 Tiny presented the best trade-off between detection accuracy and speed, with average inference times under 4 ms on the GPU considering different input resolutions and at the same time achieving an F1 score similar to YOLOR. This work will enable the development of advanced artificial vision systems for robotics in forestry monitoring operations.
    Type of Medium: Online Resource
    ISSN: 2218-6581
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2662587-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Journal of Imaging, MDPI AG, Vol. 7, No. 9 ( 2021-09-03), p. 176-
    Abstract: Mobile robotics in forests is currently a hugely important topic due to the recurring appearance of forest wildfires. Thus, in-site management of forest inventory and biomass is required. To tackle this issue, this work presents a study on detection at the ground level of forest tree trunks in visible and thermal images using deep learning-based object detection methods. For this purpose, a forestry dataset composed of 2895 images was built and made publicly available. Using this dataset, five models were trained and benchmarked to detect the tree trunks. The selected models were SSD MobileNetV2, SSD Inception-v2, SSD ResNet50, SSDLite MobileDet and YOLOv4 Tiny. Promising results were obtained; for instance, YOLOv4 Tiny was the best model that achieved the highest AP (90%) and F1 score (89%). The inference time was also evaluated, for these models, on CPU and GPU. The results showed that YOLOv4 Tiny was the fastest detector running on GPU (8 ms). This work will enhance the development of vision perception systems for smarter forestry robots.
    Type of Medium: Online Resource
    ISSN: 2313-433X
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2824270-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Viruses, MDPI AG, Vol. 15, No. 2 ( 2023-02-04), p. 437-
    Abstract: In Brazil, a yellow fever (YF) outbreak was reported in areas considered YF-free for decades. The low vaccination coverage and the increasing forest fragmentation, with the wide distribution of vector mosquitoes, have been related to yellow fever virus (YFV) transmission beyond endemic areas since 2016. Aiming to elucidate the molecular and phylogenetic aspects of YFV spread on a local scale, we generated 43 new YFV genomes sampled from humans, non-human primates (NHP), and primarily, mosquitoes from highly heterogenic areas in 15 localities from Rio de Janeiro (RJ) state during the YFV 2016–2019 outbreak in southeast Brazil. Our analysis revealed that the genetic diversity and spatial distribution of the sylvatic transmission of YFV in RJ originated from at least two introductions and followed two chains of dissemination, here named the YFV RJ-I and YFV RJ-II clades. They moved with similar dispersal speeds from the north to the south of the RJ state in parallel directions, separated by the Serra do Mar Mountain chain, with YFV RJ-I invading the north coast of São Paulo state. The YFV RJ-I clade showed a more significant heterogeneity across the entire polyprotein. The YFV RJ-II clade, with only two amino acid polymorphisms, mapped at NS1 (I1086V), present only in mosquitoes at the same locality and NS4A (I2176V), shared by all YFV clade RJ-II, suggests a recent clustering of YFV isolates collected from different hosts. Our analyses strengthen the role of surveillance, genomic analyses of YVF isolated from other hosts, and environmental studies into the strategies to forecast, control, and prevent yellow fever outbreaks.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    MDPI AG ; 2021
    In:  Agronomy Vol. 11, No. 2 ( 2021-02-02), p. 279-
    In: Agronomy, MDPI AG, Vol. 11, No. 2 ( 2021-02-02), p. 279-
    Abstract: Sap flow measurements of trees are today the most common method to determine evapotranspiration at the tree and the forest/crop canopy level. They provide independent measurements for flux comparisons and model validation. The most common approach to measure the sap flow is based on intrusive solutions with heaters and thermal sensors. This sap flow sensor technology is not very reliable for more than one season crop; it is intrusive and not adequate for low diameter trunk trees. The non-invasive methods comprise mostly Radio-frequency (RF) technologies, typically using satellite or air-born sources. This system can monitor large fields but cannot measure sap levels of a single plant (precision agriculture). This article studies the hypothesis to use of RF signals attenuation principle to detect variations in the quantity of water present in a single plant. This article presents a well-defined experience to measure water content in leaves, by means of high gains RF antennas, spectrometer, and a robotic arm. Moreover, a similar concept is studied with an off-the-shelf radar solution—for the automotive industry—to detect changes in the water presence in a single plant and leaf. The conclusions indicate a novel potential application of this technology to precision agriculture as the experiments data is directly related to the sap flow variations in plant.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Robotics Vol. 12, No. 4 ( 2023-08-14), p. 117-
    In: Robotics, MDPI AG, Vol. 12, No. 4 ( 2023-08-14), p. 117-
    Abstract: In recent years, there has been a remarkable surge in the development and research of tethered aerial systems, thus reflecting a growing interest in their diverse applications. Long-term missions involving aerial vehicles present significant challenges due to the limitations of current battery solutions. Tethered vehicles can circumvent such restrictions by receiving their power from an element on the ground such as a ground station or a mobile terrestrial platform. Tethered Unmanned Aerial Vehicles (UAVs) can also be applied to load transportation achieved by a single or multiple UAVs. This paper presents a comprehensive systematic literature review, with a special focus on solutions published in the last five years (2017–2022). It emphasizes the key characteristics that are capable of grouping publications by application scope, propulsion method, energy transfer solution, perception sensors, and control techniques adopted. The search was performed in six different databases, thereby resulting in 1172 unique publications, from which 182 were considered for inclusion in the data extraction phase of this review. Among the various aircraft types, multirotors emerged as the most widely used category. We also identified significant variations in the application scope of tethered UAVs, thus leading to tailored approaches for each use case, such as the fixed-wing model being predominant in the wind generation application and the lighter-than-air aircraft in the meteorology field. Notably, the classical Proportional–Integral–Derivative (PID) control scheme emerged as the predominant control methodology across the surveyed publications. Regarding energy transfer techniques, most publications did not explicitly describe their approach. However, among those that did, high-voltage DC energy transfer emerged as the preferred solution. In summary, this systematic literature review provides valuable insights into the current state of tethered aerial systems, thereby showcasing their potential as a robust and sustainable alternative to address the challenges associated with long-duration aerial missions and load transportation.
    Type of Medium: Online Resource
    ISSN: 2218-6581
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2662587-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...