GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: Highlights: • Climate model sensitivity experiments are performed using state-of-the-art ice sheet and freshwater reconstructions • Declining Northern Hemisphere ice sheets increase the sensitivity of the AMOC to North Atlantic meltwater discharge • Deglacial rise in atmospheric CO2 concentration decreases the sensitivity of the AMOC to North Atlantic meltwater discharge • Both effects provide a complementary perspective to existing explanations for abrupt AMOC transitions Abstract: The last deglaciation was characterized by a sequence of abrupt climate events thought to be linked to rapid changes in Atlantic meridional overturning circulation (AMOC). The sequence includes a weakening of the AMOC after the Last Glacial Maximum (LGM) during Heinrich Stadial 1 (HS1), which ends with an abrupt AMOC amplification at the transition to the Bølling/Allerød (B/A). This transition occurs despite persistent deglacial meltwater fluxes that counteract vigorous North Atlantic deep-water formation. Using the Earth system model COSMOS with a range of deglacial boundary conditions and reconstructed deglacial meltwater fluxes, we show that deglacial CO2 rise and ice sheet decline modulate the sensitivity of the AMOC to these fluxes. While declining ice sheets increase the sensitivity, increasing atmospheric CO2 levels tend to counteract this effect. Therefore, the occurrence of a weaker HS1 AMOC and an abrupt AMOC increase in the presence of meltwater, might be explained by these effects, as an alternative to or in combination with changes in the magnitude or routing of meltwater discharge.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Previous modelling efforts have investigated climate responses to different Milankovitch forcing during Marine Isotope Stage (MIS) 13. During this time the climate has been highly variable at atmospheric CO2 concentrations of ~240 ppm. As yet, ice sheet-climate feedbacks were missing in previous studies. Therefore we use the state-of-the-art coupled climate-ice sheet model, AWI-ESM-1.2, to investigate the MIS-13 climate and corresponding Northern Hemisphere ice sheet (NHIS) evolution by performing simulations under three different astronomical configurations representing 495, 506 and 517 kyr BP. The simulated excess ice compared to present-day is mainly over the Cordillera, Arctic islands and Tibet. The global mean surface air temperature for the MIS-13 experiments have the same magnitude. At 506 kyr BP with boreal summer at perihelion, the Northern Hemisphere continents are warmer during summer than the other experiments, which could potentially inhibit the development of the ice sheets. The Cordilleran Ice Sheet is found to be especially sensitive to orbital (precession) forcing, at an intermediate CO2 level. This is probably due to its high elevation where the freezing point could be easily maintained. The other ice sheets over northeast America and Eurasia, however, are absent in our simulations. We propose that the alpine-based Cordilleran Ice Sheet is more sensitive and easier to build up than other NHISs in response to the astronomical controlled summer insolation. Dynamic surges are simulated for the Cordilleran Ice Sheet under fixed low orbital forcing. These surges due to internal ice sheet-climate feedbacks could potentially be the mechanism for the millennial scale H-like events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-08-01
    Description: Major shifts in ocean circulation are thought to be responsible for abrupt changes in temperature and atmospheric CO2 during the last deglaciation, linked to variability in meridional heat transport and deep ocean carbon storage. There is also widespread evidence for shifts in biological production during these times of deglacial CO2 rise, including enhanced diatom production in regions such as the tropical Atlantic. However, it remains unclear as to whether this diatom production was driven by enhanced wind-driven upwelling or density-driven vertical mixing, or by elevated thermocline concentrations of silicic acid supplied to the surface at a constant rate. Here, we demonstrate that silicic acid supply at depth in the NE Atlantic was enhanced during the abrupt climate events of the deglaciation. We use marine sediment archives to show that an increase in diatom production during abrupt climate shifts could only occur in regions of the NE Atlantic where the deep supply of silicic acid could reach the surface. The associated changes are indicative of enhanced regional wind-driven upwelling and/or weakened stratification due to circulation changes during phases of weakened Atlantic meridional overturning. Globally near-synchronous pulses of diatom production and enhanced thermocline concentrations of silicic acid suggest that widespread deglacial surface-driven breakdown of stratification, linked to changes in atmospheric circulation, had major consequences for biological productivity and carbon cycling.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-09-19
    Description: The last deglaciation was characterized by a sequence of abrupt climate events thought to be linked to rapid changes in Atlantic meridional overturning circulation (AMOC). The sequence includes a weakening of the AMOC after the Last Glacial Maximum (LGM) during Heinrich Stadial 1 (HS1), which ends with an abrupt AMOC amplification at the transition to the Bølling/Allerød (B/A). This transition occurs despite persistent deglacial meltwater fluxes that counteract vigorous North Atlantic deep-water formation. Using the Earth system model COSMOS with a range of deglacial boundary conditions and reconstructed deglacial meltwater fluxes, we show that deglacial CO2 rise and ice sheet decline modulate the sensitivity of the AMOC to these fluxes. While declining ice sheets increase the sensitivity, increasing atmospheric CO2 levels tend to counteract this effect. Therefore, the occurrence of a weaker HS1 AMOC and an abrupt AMOC increase in the presence of meltwater, might be explained by these effects, as an alternative to or in combination with changes in the magnitude or routing of meltwater discharge.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...