GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: The response of the marine carbon cycle to changes in atmospheric CO2 concentrations will be determined, in part, by the relative response of calcifying and non-calcifying organisms to global change. Planktonic foraminifera are responsible for a quarter or more of global carbonate production, therefore understanding the sensitivity of calcification in these organisms to environmental change is critical. Despite this, there remains little consensus as to whether, or to what extent, chemical and physical factors affect foraminiferal calcification. To address this, we directly test the effect of multiple controls on calcification in culture experiments and core-top measurements of Globigerinoides ruber. We find that two factors, body size and the carbonate system, strongly influence calcification intensity in life, but that exposure to corrosive bottom waters can overprint this signal post mortem. Using a simple model for the addition of calcite through ontogeny, we show that variable body size between and within datasets could complicate studies that examine environmental controls on foraminiferal shell weight. In addition, we suggest that size could ultimately play a role in determining whether calcification will increase or decrease with acidification. Our models highlight that knowledge of the specific morphological and physiological mechanisms driving ontogenetic change in calcification in different species will be critical in predicting the response of foraminiferal calcification to future change in atmospheric pCO2.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Description: Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high ( 〉  800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene ( ∼  50  Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4 ×  CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP – the Deep-time Model Intercomparison Project, itself a group within the wider Paleoclimate Modelling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-02-08
    Description: Accurate estimates of past global mean surface temperature (GMST) help to contextualise future climate change and are required to estimate the sensitivity of the climate system to CO2 forcing through Earth's history. Previous GMST estimates for the latest Paleocene and early Eocene (∼57 to 48 million years ago) span a wide range (∼9 to 23 ∘C higher than pre-industrial) and prevent an accurate assessment of climate sensitivity during this extreme greenhouse climate interval. Using the most recent data compilations, we employ a multi-method experimental framework to calculate GMST during the three DeepMIP target intervals: (1) the latest Paleocene (∼57 Ma), (2) the Paleocene–Eocene Thermal Maximum (PETM; 56 Ma), and (3) the early Eocene Climatic Optimum (EECO; 53.3 to 49.1 Ma). Using six different methodologies, we find that the average GMST estimate (66 % confidence) during the latest Paleocene, PETM, and EECO was 26.3 ∘C (22.3 to 28.3 ∘C), 31.6 ∘C (27.2 to 34.5 ∘C), and 27.0 ∘C (23.2 to 29.7 ∘C), respectively. GMST estimates from the EECO are ∼10 to 16 ∘C warmer than pre-industrial, higher than the estimate given by the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (9 to 14 ∘C higher than pre-industrial). Leveraging the large “signal” associated with these extreme warm climates, we combine estimates of GMST and CO2 from the latest Paleocene, PETM, and EECO to calculate gross estimates of the average climate sensitivity between the early Paleogene and today. We demonstrate that “bulk” equilibrium climate sensitivity (ECS; 66 % confidence) during the latest Paleocene, PETM, and EECO is 4.5 ∘C (2.4 to 6.8 ∘C), 3.6 ∘C (2.3 to 4.7 ∘C), and 3.1 ∘C (1.8 to 4.4 ∘C) per doubling of CO2. These values are generally similar to those assessed by the IPCC (1.5 to 4.5 ∘C per doubling CO2) but appear incompatible with low ECS values (〈1.5 per doubling CO2).
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: The early Eocene (56 to 48 million years ago) is inferred to have been the most recent time that Earth's atmospheric CO2 concentrations exceeded 1000 ppm. Global mean temperatures were also substantially warmer than present day. As such, study of early Eocene climate provides insight into how a super-warm Earth system behaves and offers an opportunity to 10 evaluate climate models under conditions of high greenhouse gas forcing. The Deep Time Model Intercomparison Project (DeepMIP) is a systematic model-model and model-data intercomparison of three early Paleogene time slices: latest Paleocene, Paleocene-Eocene thermal maximum and early Eocene climatic optimum. A previous article outlined the model experimental design for climate model simulations. In this article, we outline the methodologies to be used for the compilation and analysis of climate proxy data, primarily proxies for temperature and CO2. This paper establishes the protocols for a concerted and 15 coordinated effort to compile the climate proxy records across a wide geographic range. The resulting climate "atlas" will be used to constrain and evaluate climate models for the three selected time intervals, and provide insights into the mechanisms that control these warm climate states. We provide version 0.1 of this database, in anticipation that this will be expanded in subsequent publications.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-21
    Description: Hyrrokkin sarcophaga is a parasitic foraminifera that is commonly found in cold-water coral reefs where it infests the file clam Acesta excavata and the scleractinian coral Desmophyllum pertusum (formerly known as Lophelia pertusa). Here, we present measurements of the trace element and isotopic composition of these parasitic foraminifera, analyzed by inductively coupled optical emission spectrometry (ICP-OES), electron probe microanalysis (EPMA) and mass spectrometry (gas-source MS and inductively-coupledplasma MS). Our results reveal that the geochemical signature of H. sarcophaga depends on the host organism it infests. Sr / Ca ratios are 1.1 mmol mol 1 higher in H. sarcophaga that infest D. pertusum, which could be an indication that dissolved host carbonate material is utilized in shell calcification, given that the aragonite of D. pertusum has a naturally higher Sr concentration compared to the calcite of A. excavata. Similarly, we measure 3.1 parts per thousand lower delta C-13 and 0.25 parts per thousand lower delta O-18 values in H. sarcophaga that lived on D. pertusum, which might be caused by the direct uptake of the host's carbonate material with a more negative isotopic composition or different pH regimes in these foraminifera (pH can exert a control on the extent of CO2 hydration/hydroxylation) due to the uptake of body fluids of the host. We also observe higher Mn / Ca ratios in foraminifera that lived on A. excavata but did not penetrate the host shell compared to specimen that penetrated the shell, which could be interpreted as a change in food source, changes in the calcification rate, Rayleigh fractionation or changing oxygen conditions. While our measurements provide an interesting insight into the calcification process of this unusual foraminifera, these data also indicate that the geochemistry of this parasitic foraminifera is unlikely to be a reliable indicator of paleoenvironmental conditions using Sr / Ca, Mn / Ca, delta O-18 or delta C-13 unless the host organism is known and its geochemical composition can be accounted for.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-21
    Description: Here we present a comprehensive attempt to correlate aragonitic Na∕Ca ratios from Desmophyllum pertusum (formerly known as Lophelia pertusa), Madrepora oculata and a caryophylliid cold-water coral (CWC) species with different seawater parameters such as temperature, salinity and pH. Living CWC specimens were collected from 16 different locations and analyzed for their Na∕Ca ratios using solution-based inductively coupled plasma-optical emission spectrometry (ICP-OES) measurements. The results reveal no apparent correlation with salinity (30.1–40.57 g kg−1) but a significant inverse correlation with temperature (−0.31±0.04  mmolmol−1∘C−1). Other marine aragonitic organisms such as Mytilus edulis (inner aragonitic shell portion) and Porites sp. exhibit similar results highlighting the consistency of the calculated CWC regressions. Corresponding Na∕Mg ratios show a similar temperature sensitivity to Na∕Ca ratios, but the combination of two ratios appears to reduce the impact of vital effects and domain-dependent geochemical variation. The high degree of scatter and elemental heterogeneities between the different skeletal features in both Na∕Ca and Na∕Mg, however, limit the use of these ratios as a proxy and/or make a high number of samples necessary. Additionally, we explore two models to explain the observed temperature sensitivity of Na∕Ca ratios for an open and semi-enclosed calcifying space based on temperature-sensitive Na- and Ca-pumping enzymes and transport proteins that change the composition of the calcifying fluid and consequently the skeletal Na∕Ca ratio.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...