GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3European Geosciences Union General Assembly 2018, Vienna, 2018-04-08-2018-04-13Copernicus Publications
    Publication Date: 2018-04-16
    Description: Understanding the dynamics of warm climate states has gained increasing importance in the face of anthropogenic climate change. During the Last Interglacial (LIG, ∼128 to 116 ka), greenhouse gas concentrations and high latitude insolation were higher than pre-industrial levels, causing a high-latitude warming (Turney and Jones, 2010; Pfeiffer and Lohmann, 2016). We present a suite of climate model results (COSMOS, MPI-ESM, AWI-CM, EC-Earth) to evaluate the patterns and compare the simulations with the above-mentioned surface temperature reconstructions, seasonal archives (Felis et al., 2015; Brocas et al., 2017), and sea ice reconstructions (Stein et al., 2017). As a result of this modestly warmer climate, polar ice sheets were smaller and estimates report that the global mean sea level was 6-9 meters higher than today (Dutton et al., 2015). The sensitivity of the Antarctic Ice sheet is related to the local temperature around the West Antarctic Ice Sheet (WAIS) (Sutter et al., 2016). Our ice sheet model experiments indicate that a 2-3°C local warming causes already a partially collapsed, irreversible WAIS. A pronounced subsurface oceanic warming can destabilize the WAIS, resulting in an oceanic gateway between the Ross and Weddell Seas. A sensitivity study using the new oceanic gateway between the Atlantic and Pacific Oceans as a bathymetrical boundary condition indicates that this region would be covered by sea ice. Mixing due to sea-ice formation prevents a pronounced warming around the WAIS and would stabilize the WAIS. Thus, the disintegration of the WAIS is probably related to non-local influences like in Hellmer et al. (2017) where the shelves of West Antarctica are warmed from below by Circumpolar Deep Water.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-09-17
    Description: The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66% range: 0.02–0.14 m; 90% range: 0.0–0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66% range: 0.04–0.21 m; 90% range: 0.01–0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these values increase to 0.09 m (66% range: 0.04–0.17 m; 90% range: 0.02–0.25 m) for RCP-2.6 and 0.15 m (66% range: 0.07–0.28 m; 90% range: 0.04–0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Ocean Science, Copernicus Publications, 19(6), pp. 1529-1544, ISSN: 1812-0784
    Publication Date: 2024-01-25
    Description: Recent studies have found evidence for a potential future tipping point, when the density of Antarctic continental shelf waters, specifically in the southern Weddell Sea, will allow for the onshore flow of warm waters of open ocean origin. A cold-to-warm regime shift in the adjacent ice shelf cavities entails a strong enhancement of ice shelf basal melt rates and could trigger instabilities in the ice sheet. From a suite of numerical experiments, aimed to force such a regime shift on the continental shelf, we identified the density balance between the shelf waters formed by sea ice production and the warmer water at the shelf break as the defining element of a tipping into a warm state. In our experiments, this process is reversible but there is evidence for hysteresis behaviour. Using HadCM3 20th-century output as atmospheric forcing, the resulting state of the Filchner-Ronne cavity depends on the initial state. In contrast, ERA Interim forcing pushes even a warm-initialized cavity into a cold state, i.e. it pushes the system back across the reversal threshold to the cold side. However, it turns out that for forcing data perturbations of a realistic magnitude, a unique and universal recipe for triggering a regime shift in Antarctic marginal seas was not found; instead, various ocean states can lead to an intrusion of off-shelf waters onto the continental shelf and into the cavities. Whether or not any given forcing or perturbation yields a density imbalance and thus allows for the inflow of warm water depends on the complex interplay between bottom topography, mean ocean state, sea ice processes, and atmospheric conditions. Copyright:
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3The Cryosphere, Copernicus Publications, 14(7), pp. 2205-2216, ISSN: 1994-0416
    Publication Date: 2024-01-30
    Description: Previous studies show accelerations of West Antarctic glaciers, implying that basal melt rates of these glaciers were previously small and increased in the middle of the 20th century. This enhanced melting is a likely source of the observed Ross Sea (RS) freshening, but its long-term impact on the Southern Ocean hydrography has not been well investigated. Here, we conduct coupled sea ice-ice shelf-ocean simulations with different levels of ice shelf melting from West Antarctic glaciers. Freshening of RS shelf and bottom water is simulated with enhanced West Antarctic ice shelf melting, while no significant changes in shelf water properties are simulated when West Antarctic ice shelf melting is small. We further show that the freshening caused by glacial meltwater from ice shelves in the Amundsen and Bellingshausen seas can propagate further downstream along the East Antarctic coast into the Weddell Sea. The freshening signal propagates onto the RS continental shelf within a year of model simulation, while it takes roughly 5-10 and 10-15 years to propagate into the region off Cape Darnley and into the Weddell Sea, respectively. This advection of freshening modulates the shelf water properties and possibly impacts the production of Antarctic Bottom Water if the enhanced melting of West Antarctic ice shelves continues for a longer period.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...