GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cham :Springer International Publishing AG,  (3)
  • Society for Sedimentary Geology (SEPM)  (1)
Publisher
Language
Years
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Groundwater. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (357 pages)
    Edition: 1st ed.
    ISBN: 9783030668136
    Series Statement: Springer Hydrogeology Series
    DDC: 333.9104
    Language: English
    Note: Intro -- Preface -- Contents -- About the Author -- 1 Introduction to Climate Change and Groundwater -- 1.1 Introduction -- 1.2 Climate Change and Groundwater -- 1.3 Climate Change Modeling -- 1.4 Projected Global Climate Changes -- 1.5 Climate Change and Groundwater Recharge and Use -- 1.6 Sea Level Rise and Groundwater -- 1.7 Evaluating Climate Change Impacts on Groundwater Storage -- 1.8 Adaptation Options -- 1.9 Water Planning and Governance -- 1.10 Climate Change Adaptation Planning Process -- 1.11 Case Studies of Adaptation to Climate Change in High Groundwater Use Area -- References -- 2 Climate and Groundwater Primer -- 2.1 Aquifer Water Budgets -- 2.2 Potential, Reference, and Actual Evaporation -- 2.3 Infiltration -- 2.4 Recharge -- 2.4.1 Recharge Types -- 2.4.2 Anthropogenic Aquifer Recharge -- 2.4.3 Quantification of Recharge -- 2.4.3.1 Water Fluctuation Method -- 2.4.3.2 Environmental Tracers -- 2.4.3.3 Water Budget Methods -- 2.4.3.4 Flow-Tube Method -- 2.4.4 Climate Change, Land Use Land Cover Change, and Groundwater Recharge -- 2.4.5 Effects of Temperature on Recharge -- 2.4.6 Climate Change and Recharge -- 2.5 Climate Change and Water Demand -- 2.5.1 Plant Evapotranspiration Rates and Irrigation Water Demands -- 2.5.2 Climate Change and Domestic and Industrial Water Demands -- References -- 3 Historical Evidence for Anthropogenic Climate Change and Climate Modeling Basics -- 3.1 Introduction -- 3.2 Historical Climate Trends -- 3.2.1 Temperature -- 3.2.2 Precipitation -- 3.2.3 Drought -- 3.3 Historic Sea Level Rise -- 3.4 Tropical Storm Frequency and Intensity -- 3.5 Atmospheric Carbon Dioxide Concentration -- 3.6 General Circulation Models (GCMs) -- 3.6.1 GCM History -- 3.6.2 Coupled Model Intercomparison Project -- 3.6.3 CMIP and IPCC Emissions Scenarios -- 3.6.4 Accessing GCM and RGM Results -- 3.6.4.1 Climate Wizard. , 3.6.4.2 U.S. Geological Survey Viewers -- References -- 4 Intergovernmental Panel on Climate Change and Global Climate Change Projections -- 4.1 Intergovernmental Panel on Climate Change -- 4.2 Global Climate Change Predictions -- 4.2.1 Introduction -- 4.2.2 Global Temperature Change -- 4.2.3 Precipitation -- 4.2.4 Droughts and Aridity -- 4.2.5 Snow and Glacier Dominated Water Systems -- 4.2.6 Global Sea Level Rise -- 4.2.7 Extreme Storms -- References -- 5 Modeling of Climate Change and Aquifer Recharge and Water Levels -- 5.1 Introduction -- 5.2 Modeling Approaches -- 5.3 Bias Correction -- 5.4 Downscaling -- 5.4.1 Scaling and Change Factors -- 5.4.2 Dynamical Downscaling -- 5.4.3 Statistical Downscaling -- 5.4.4 Stochastic Weather Generators -- 5.5 Hydrologic Modeling -- 5.6 Aquifer Heterogeneity and Modeling Results -- 5.7 Bottom-Up (Decision-Scaling, Sensitivity Analysis) Approach -- 5.8 Published Modeling Studies -- 5.8.1 Edwards Aquifer, Texas -- 5.8.2 Rhenish Massif, Germany -- 5.8.3 Southern High Plains, New Mexico and Texas -- 5.8.4 High Plains Aquifer, Western United States -- 5.8.5 Serral-Salinas Aquifer, Southeastern Spain -- 5.8.6 Galicia-Costa, Spain -- 5.8.7 West Bengal, India -- 5.8.8 Grand Forks, South Central British Columbia, Canada -- 5.8.9 Mediterranean Coastal Aquifers -- 5.8.10 Suwannee River Basin, Northern Florida -- 5.9 Conclusions -- References -- 6 Sea Level Rise and Groundwater -- 6.1 Introduction -- 6.2 Direct Inundation -- 6.2.1 Introduction -- 6.2.2 Future Inundation Mapping -- 6.3 Extreme Sea Level Events (Storm Surges) -- 6.3.1 Climate Change and ESLs -- 6.3.2 Historical Impacts of ESLs on Fresh Groundwater Resources -- 6.4 Saline Water Intrusion -- 6.4.1 Basics -- 6.4.2 Theoretical Modeling -- 6.4.3 Evaluation of Location of Fresh-Saline Water Interface -- 6.4.4 Saline Water Intrusion Vulnerability Assessments. , 6.4.5 Site Specific Modeling of SLR Impacts on Saline Water Intrusion -- 6.4.5.1 Monterey County, California -- 6.4.5.2 Hilton Head, South Carolina -- 6.4.5.3 Shelter Island, New York -- 6.4.5.4 Dutch Delta, The Netherlands -- 6.4.5.5 Island of Faster, Denmark -- 6.4.5.6 Borkum, German North Sea -- 6.4.5.7 Broward County, Southeastern Florida -- 6.4.5.8 Laccadive Islands, India -- 6.5 Rising Water Tables-Groundwater Inundation -- 6.5.1 Coastal Groundwater Inundation Vulnerability Mapping Methods -- 6.5.1.1 Three-Dimensional Groundwater Modeling Approach -- 6.5.1.2 Empirical Water Table Elevation Surface and Hydrostatic Rise Approach -- 6.5.1.3 Simple Hydrostatic Rise with No Hydraulic Gradient Approach -- 6.5.2 Coastal Groundwater Inundation Studies -- 6.5.2.1 Oahu, Hawaii -- 6.5.2.2 Northern California -- 6.5.2.3 Honolulu, Hawaii -- 6.5.2.4 Coastal New Hampshire -- 6.5.2.5 San Francisco Bay Area -- References -- 7 Climate Change and Small Islands -- 7.1 Introduction -- 7.2 Small Island Erosion and Inundation -- 7.3 Fresh Groundwater on Small Islands -- 7.4 Field and Modeling Studies of Freshwater Lenses and Their Vulnerability to Climate Change -- 7.4.1 Theoretical Modeling (Underwood et al. 1992) -- 7.4.2 Home Island, South Keeling Atoll, Indian Ocean -- 7.4.3 Tarawa, Republic of Kiribata -- 7.4.4 Modeling of Impacts of Storm Overwash and SLR on Pacific Atolls -- 7.4.5 Andros Island, Bahamas -- 7.4.6 Modeling of Effects of SLR on Waves and Overwash -- 7.4.7 Roi-Namur Island, Kwajalein Atoll, Republic of the Marshall Island, Overwash -- 7.4.8 Supertyphoon Haiyan, Samar Island, Philippines -- 7.4.9 Distant Source Waves -- 7.5 Small Island Climate Change Adaptation Options -- References -- 8 Groundwater Related Impacts of Climate Change on Infrastructure -- 8.1 Introduction -- 8.2 Urban Rising Groundwater Levels -- 8.3 Stormwater Management Systems. , 8.4 Centralized Sewage Systems -- 8.5 On-Site Sewage Treatment and Disposal Systems -- 8.6 Agricultural and Changing Groundwater Levels -- 8.7 Land Subsidence -- References -- 9 Adaptation and Resilience Concepts -- 9.1 Introduction -- 9.2 Vulnerability Assessments -- 9.3 Adaptation Planning Under Uncertainty -- 9.4 Adaptative Capacity -- 9.5 Effectiveness of Adaptation -- References -- 10 Adaptation Options -- 10.1 Introduction -- 10.2 Demand Management -- 10.2.1 Demand Management Basics -- 10.2.2 Irrigation Demand Management -- 10.2.3 Residential Water Demand Management -- 10.2.3.1 Economic Incentives -- 10.2.3.2 Legal Mandates -- 10.2.3.3 Consumer Education -- 10.2.4 Water Utilities Leakage and Non-revenue Water -- 10.3 Supply Augmentation -- 10.3.1 Desalination -- 10.3.2 Managed Aquifer Recharge -- 10.3.3 Wastewater Reuse -- 10.3.4 Rainwater Harvesting -- 10.3.5 Transferring Water -- 10.4 Adaptations Options for Rural Areas of Developing Countries -- 10.5 Adaptations to Saline-Water Intrusion -- References -- 11 Conjunctive Use -- 11.1 Introduction -- 11.2 Water Governance -- 11.3 Implementation of Conjunctive Use -- 11.3.1 Southern California -- 11.3.2 Arizona -- 11.3.3 Florida -- References -- 12 Groundwater Management and Adaptation Decision Making Process -- 12.1 Introduction -- 12.2 Water Supply Decision Makers -- 12.3 Water Supply Decision-Making Process -- 12.3.1 Basic Decision-Making Process -- 12.3.2 Decision Support Systems -- 12.4 General Public Engagement -- 12.5 Engagement of Decision-Makers with the Climate Change Research Community -- 12.6 Decision-Making Planning Horizon -- 12.6.1 Florida -- 12.6.2 Texas -- 12.6.3 Arizona -- 12.6.4 California -- 12.7 Summary -- References -- 13 Regional Hydrological Impacts of Climate Changes and Adaptation Actions and Options -- 13.1 Introduction -- 13.2 Southwestern North America. , 13.3 High Plains (Western United States) -- 13.4 Florida -- 13.5 Mediterranean Region -- 13.5.1 Alicante, Spain -- 13.5.2 Southern Italy -- 13.5.3 Mediterranean Coastal Aquifers -- 13.5.4 Serral-Salinas Aquifer, Southeastern Spain -- 13.5.5 Adaptation Options in the Mediterranean Region -- 13.6 Africa -- References -- 14 Applied Climate Change Assessment and Adaptation -- 14.1 Introduction -- 14.2 Prediction of Local Climate Changes -- 14.3 Prediction of Sea Level Rise Impacts -- 14.3.1 Prediction of SLR Impacts -- 14.3.2 Sea Level Rise Adaptation -- 14.4 Water Supply Adaptation Options -- 14.4.1 Water Demand Management and Reallocation -- 14.4.2 New Water Supply Options -- 14.4.3 Optimization-Conjunctive Used and Managed Aquifer Recharge -- 14.5 Decision-Making Under Climate Uncertainty -- 14.6 Prognosis and Recommendations -- References.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (872 pages)
    Edition: 1st ed.
    ISBN: 9783030110840
    Series Statement: Springer Hydrogeology Series
    Language: English
    Note: Intro -- Preface -- Contents -- About the Author -- 1 Introduction to Anthropogenic Aquifer Recharge -- 1.1 Introduction -- 1.2 Definitions -- 1.3 MAR Techniques -- 1.3.1 Water Storage-Type MAR Techniques -- 1.3.2 Water Treatment-Type MAR Techniques -- 1.3.3 Salinity Barrier Systems -- 1.4 MAR as an Adaptation to Water Scarcity and Climate Change -- 1.5 MAR Advantages and Disadvantages -- 1.6 MAR System Performance and Impacts -- 1.7 Basic Feasibility, Design, and Operational Issues -- References -- 2 Hydrogeology Basics-Aquifer Types and Hydraulics -- 2.1 Introduction -- 2.2 Aquifer Types and Terminology -- 2.2.1 Aquifers, Semiconfining and Confining Units -- 2.2.2 Unconfined, Semiconfined, and Confined Aquifers -- 2.2.3 Porosity-Type Aquifer Characterization -- 2.2.4 Lithologic Aquifer Types -- 2.3 Aquifer Hydraulic Properties -- 2.3.1 Darcy's Law and Hydraulic Conductivity -- 2.3.2 Transmissivity -- 2.3.3 Storativity -- 2.3.4 Hydraulic Diffusivity -- 2.3.5 Porosity and Permeability -- 2.3.6 Dispersivity -- 2.4 Aquifer Heterogeneity -- 2.4.1 Types and Scales of Aquifer Heterogeneity -- 2.4.2 Anisotropy -- 2.4.3 Connectivity -- References -- 3 Vadose Zone Hydrology Basics -- 3.1 Introduction -- 3.2 Capillary Pressure -- 3.3 Soil-Water and Matric Potential -- 3.4 Unsaturated Hydraulic Conductivity -- 3.5 Darcy's Equation for Unsaturated Sediments -- 3.6 Infiltration Theory -- 3.7 Infiltration Controls -- 3.7.1 Introduction -- 3.7.2 Matrix and Macropore Recharge -- 3.7.3 Surface Clogging Layers -- 3.7.4 Air Entrapment -- 3.7.5 Temperature Effects on Infiltration -- 3.8 Percolation and the Fate of Infiltrated Water -- References -- 4 Groundwater Recharge and Aquifer Water Budgets -- 4.1 Introduction -- 4.2 Aquifer Water Budget Concepts -- 4.3 Precipitation (Rainfall) -- 4.3.1 Rain Gauges. , 4.3.2 Remote Sensing Measurement of Rainfall (Radar and Satellite) -- 4.4 Evapotranspiration and Lake Evaporation -- 4.4.1 Lysimeters -- 4.4.2 Soil Moisture Depletion -- 4.4.3 Sap Flow -- 4.4.4 Pan Evaporation -- 4.4.5 Micrometeorological Techniques-Eddy Covariance Method -- 4.4.6 Micrometeorological Techniques-Energy Balance Methods -- 4.4.7 Remote Sensing ET Measurements -- 4.5 Discharge -- 4.5.1 Discharge Basics -- 4.5.2 Stream and Lake Discharge -- 4.5.3 Submarine Groundwater Discharge -- 4.5.4 Wetland Discharge -- 4.6 Storage Change -- 4.6.1 Water-Level Based Methods -- 4.6.2 Relative Microgravity -- 4.6.3 Grace -- 4.7 Groundwater Pumping -- 4.7.1 Introduction -- 4.7.2 Aerial Photography and Satellite Remote Sensing -- 4.8 Recharge Estimates -- 4.8.1 Residual of Aquifer Water Budgets -- 4.8.2 Water Budgets of Surface Water Bodies -- 4.8.3 Water-Table Fluctuation Method -- 4.8.4 Chloride Mass-Balance Method -- References -- 5 Geochemistry and Managed Aquifer Recharge Basics -- 5.1 Introduction -- 5.2 Chemical Equilibrium Thermodynamics -- 5.3 Carbonate Mineral Reactions -- 5.4 Redox Reactions -- 5.4.1 Redox Basics -- 5.4.2 Oxidation-Reduction Potential -- 5.4.3 Redox State Measurement -- 5.4.4 Eh-pH Diagrams -- 5.5 Kinetics -- 5.6 Clay Minerals, Cation Exchange and Adsorption -- 5.6.1 Clay Mineralogy -- 5.6.2 Adsorption and Ion Exchange -- 5.6.3 Sorption Isotherms -- 5.6.4 Clay Dispersion -- 5.7 Geochemical Evaluation -- References -- 6 Anthropogenic Aquifer Recharge and Water Quality -- 6.1 Introduction -- 6.2 Mixing Equations and Curves -- 6.3 Dissolution, Precipitation, and Replacement -- 6.4 Redox Reactions -- 6.4.1 Recharge of Oxic Water into Reduced (Anoxic) Aquifers -- 6.4.2 Recharge of Organic-Rich Water -- 6.5 Arsenic -- 6.5.1 Sources of Arsenic in Groundwater -- 6.5.2 Arsenic in ASR Systems in Florida. , 6.5.3 Arsenic in the Bolivar, South Australia Reclaimed Water ASR System -- 6.5.4 Arsenic in Recharge Systems in the Netherlands -- 6.5.5 Management of Arsenic Leaching -- 6.6 Sorption and Cation Exchange -- 6.6.1 Introduction -- 6.6.2 Ion Exchange and MAR Water Quality -- 6.6.3 Sorption and MAR Water Quality -- References -- 7 Contaminant Attenuation and Natural Aquifer Treatment -- 7.1 Introduction -- 7.2 Pathogen NAT -- 7.2.1 Pathogen Retention and Inactivation -- 7.2.2 Field Evaluations of Pathogen Attenuation During Aquifer Recharge -- 7.2.3 Laboratory "Bench Top" Batch and Column Studies -- 7.2.4 Diffusion Chamber Studies -- 7.2.5 Prediction of Pathogen Inactivation by MAR -- 7.3 Disinfection Byproducts -- 7.3.1 Introduction -- 7.3.2 Formation of THMs and HAAs in MAR Systems -- 7.3.3 Attenuation of THMs and HAAs in MAR -- 7.3.4 Field Studies of THM and HAAs in ASR Systems -- 7.4 Trace Organic Compounds -- 7.4.1 Introduction -- 7.4.2 Laboratory Studies of TrOCs Removal During MAR -- 7.4.3 TrOCs Removal During Riverbank Filtration -- 7.4.4 TrOCs Removal During Soil-Aquifer Treatment -- 7.4.5 TrOCs Removal During Surface Spreading -- 7.4.6 TrOCs Attenuation in Groundwater (Recharge by Injection) -- 7.4.7 TrOCs Removal by NAT Summary -- 7.5 Dissolved Organic Carbon -- 7.6 Metals -- References -- 8 MAR Project Implementation and Regulatory Issues -- 8.1 Project Plan -- 8.2 Project Success Criteria -- 8.3 MAR Feasibility Assessment -- 8.4 MAR Feasibility Factors -- 8.4.1 Water Needs and Sources -- 8.4.2 Hydrogeological Factors -- 8.4.3 Infrastructure and Logistical Issues -- 8.4.4 Regulatory and Political Issues -- 8.5 Economic Analysis and MAR Feasibility -- 8.6 Project Implementation Strategies -- 8.7 Desktop Feasibility Assessment -- 8.8 Site Selection -- 8.8.1 Multiple Criteria Decision Analysis -- 8.8.2 Geographic Information Systems. , 8.8.3 Decision Support Systems -- 8.9 Phase II: Field Investigations and Testing of Potential System Sites -- 8.10 Phase III: MAR System Design -- 8.11 Phase IV: Pilot System Construction -- 8.12 Phases V and VI: Project Review, Adaptive Management, and System Expansion -- References -- 9 MAR Hydrogeological and Hydrochemistry Evaluation Techniques -- 9.1 Information Needs -- 9.2 Testing Methods Overview -- 9.3 Exploratory Wells -- 9.3.1 Mud-Rotary Method -- 9.3.2 Direct Air-Rotary Drilling -- 9.3.3 Reverse-Air Rotary Method -- 9.3.4 Dual-Tube Methods -- 9.3.5 Dual-Rotary Drilling -- 9.3.6 Cable-Tool Drilling -- 9.3.7 Rotary-Sonic Drilling -- 9.3.8 Hollow-Stem Auger Method -- 9.3.9 Wireline Coring -- 9.4 Aquifer Pumping Tests -- 9.4.1 Introduction -- 9.4.2 Pumping Test Data Analysis -- 9.4.3 Water Quality Testing -- 9.5 Slug Testing -- 9.6 Packer Tests -- 9.7 Testing and Sampling While Drilling -- 9.8 Direct-Push Technology -- 9.9 Single-Well (Push-Pull) Tracer Tests -- 9.10 Borehole Geophysical Logging -- 9.11 Surface and Airborne Geophysics -- 9.12 Core Analyses -- 9.13 Mineralogical Analyses -- 9.14 Geochemical Investigations -- 9.15 Modeling -- References -- 10 Vadose Zone Testing Techniques -- 10.1 Introduction -- 10.2 Air Entrainment -- 10.3 Soil Infiltration Rates and Hydraulic Conductivity Measurements -- 10.4 Single- and Double-Ring Infiltrometers -- 10.4.1 Methods -- 10.4.2 Single-Ring Infiltration Screening -- 10.5 Pilot (Basin) Infiltration Tests -- 10.6 Air-Entry Permeameter -- 10.7 Borehole Permeameters -- 10.8 Guelph Permeameter -- 10.9 Velocity Permeameter -- 10.10 Comparisons of Infiltrometer and Permeameter Systems -- References -- 11 Clogging -- 11.1 Introduction -- 11.2 Causes of Well Clogging -- 11.2.1 Entrapment and Filtration of Suspended Solids -- 11.2.2 Mechanical Jamming -- 11.2.3 Gas Binding. , 11.2.4 Chemical Clogging-Mineral Scaling -- 11.2.5 Chemical Clogging-Redox Reactions -- 11.2.6 Clay Swelling and Dispersion -- 11.2.7 Biological Clogging -- 11.2.8 Biological Clogging-Iron Bacteria -- 11.3 Clogging Prediction and Management -- 11.3.1 Suspended Solids Criteria -- 11.3.2 Organic Carbon Indices -- 11.3.3 Laboratory Studies of Physical and Biological Clogging -- 11.3.4 Field Studies of Clogging -- 11.3.5 Clay Dispersion -- 11.3.6 Prediction of Physical and Biological Clogging from Source Water Quality -- 11.3.7 Evaluation of Chemical Clogging Potential -- 11.4 Clogging of Surface-Spreading MAR Systems -- 11.4.1 Causes of Clogging Overview -- 11.4.2 Laboratory Investigations of Clogging of Surface-Spreading MAR Systems -- 11.4.3 Field Investigations of Clogging of Surface-Spreading MAR Systems -- References -- 12 MAR Pretreatment -- 12.1 Introduction -- 12.2 Roughing Filters -- 12.3 Granular-Media Filters -- 12.3.1 Rapid-Sand Filtration and Rapid-Pressure Filtration -- 12.3.2 Slow-Sand Filters -- 12.4 Screen Filters -- 12.5 Membrane Filtration -- 12.6 MIEX Process -- 12.7 Constructed Wetlands -- 12.8 Disinfection -- 12.8.1 Chlorine -- 12.8.2 Chloramines -- 12.8.3 Ozone -- 12.8.4 Ultraviolet Radiation -- 12.8.5 Disinfection Strategies -- 12.9 Chemical Pretreatments -- 12.9.1 pH Adjustments -- 12.9.2 Dissolved Oxygen Removal -- 12.9.3 Iron and Manganese Management -- 12.9.4 Clay Dispersion Management -- 12.10 Multiple-Element Pretreatment Systems -- 12.10.1 CERP Surface Water Treatment Systems -- 12.10.2 Wastewater Treatment Prior to Recharge -- 12.10.3 Stormwater and Surface Water Pretreatment -- 12.10.4 Full Advanced Treatment -- 12.11 Conclusions -- References -- 13 ASR and Aquifer Recharge Using Wells -- 13.1 Introduction -- 13.2 Definitions, System Types, and Useful Storage -- 13.3 Recovery Efficiency. , 13.3.1 RE of Chemically Bounded (Brackish or Saline Aquifer) ASR Systems.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Hydraulic engineering. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (632 pages)
    Edition: 1st ed.
    ISBN: 9783319321370
    Series Statement: Springer Hydrogeology Series
    DDC: 551.49
    Language: English
    Note: Intro -- Preface -- Acknowledgments -- Contents -- About the Author -- 1 Aquifer Characterization and Properties -- 1.1 Introduction -- 1.2 Hydraulic Aquifer Types -- 1.3 Lithologic Aquifer Types -- 1.4 Groundwater Hydraulics Basics -- 1.4.1 Darcy's Law and Hydraulic Conductivity -- 1.4.2 Transmissivity -- 1.4.3 Storativity -- 1.4.4 Porosity and Permeability -- 1.4.5 Dispersivity -- 1.5 Aquifer Heterogeneity -- 1.5.1 Types and Scales of Aquifer Heterogeneity -- 1.5.2 Anisotropy -- 1.5.3 Connectivity -- 1.6 Aquifer Characterization Approach -- References -- 2 Facies Analysis and Sequence Stratigraphy -- 2.1 Introduction -- 2.2 Facies, Facies Sequences, and Facies Models -- 2.3 Limitation of Facies Models -- 2.4 Sequence Stratigraphy -- 2.4.1 Introduction -- 2.4.2 Sequence Stratigraphic Concepts and Definitions -- 2.4.3 Applications of Sequence Stratigraphy -- 2.5 Facies Modeling -- 2.6 Hydrofacies -- References -- 3 Siliciclastic Aquifers Facies Models -- 3.1 Introduction to Siliciclastic Aquifers -- 3.2 Fluvial Systems -- 3.2.1 Meandering River Facies -- 3.2.2 Braided-Stream Facies -- 3.2.3 Hydrogeology of Alluvial Aquifers -- 3.3 Alluvial-Fan Deposits -- 3.3.1 Alluvial-Fan Facies -- 3.3.2 Alluvial-Fan Hydrogeology -- 3.4 Deltas -- 3.5 Eolian Sand Deposits -- 3.6 Lake (Lacustrine) Deposits -- 3.7 Glacial Sediments -- 3.8 Linear Terrigenous Shorelines -- 3.8.1 Beach and Strand Plain Facies -- 3.8.2 Lagoonal and Tidal Flat Facies -- 3.8.3 Hydrogeology -- References -- 4 Carbonate Facies Models and Diagenesis -- 4.1 Introduction -- 4.2 Carbonate Diagenesis and Porosity and Permeability -- 4.2.1 Eogenetic Dissolution and Precipitation -- 4.2.2 Physical and Chemical Compaction -- 4.2.3 Dolomitization -- 4.3 Carbonate Facies and Sequence Stratigraphy -- 4.3.1 Shallowing-Upwards Sequences -- 4.3.2 Reefs -- 4.3.3 Carbonate Sands. , 4.3.4 Pelagic Carbonates -- References -- 5 Aquifer Characterization Program Development -- 5.1 Introduction -- 5.2 Groundwater Model Scale -- 5.3 Aquifer Characterization Techniques -- 5.3.1 Aquifer Hydraulic Properties Evaluation Techniques -- 5.3.2 Aquifer Lithology and Mineralogy Evaluation Techniques -- 5.3.3 Water Chemistry Evaluation Techniques -- 5.4 Scale Dependence of Aquifer Properties -- 5.5 Constraints on Implementation of Characterization Techniques -- 5.6 Use of Aquifer Characterization Data -- References -- 6 Borehole Drilling and Well Construction -- 6.1 Introduction -- 6.1.1 Well Drilling Program Considerations -- 6.1.2 Exploratory and Monitoring Wells Versus Production Well Design -- 6.2 Borehole Drilling Methods -- 6.2.1 Direct-Rotary Method -- 6.2.2 Reverse-Circulation Rotary Method -- 6.2.3 Reverse-Air Rotary Method -- 6.2.4 Dual-Tube Reverse-Circulation Rotary and Percussion Methods -- 6.2.5 Dual-Rotary Drilling -- 6.2.6 Cable-Tool Drilling -- 6.2.7 Sonic or Rotary-Sonic Drilling -- 6.2.8 Hollow-Stem Augers -- 6.3 Formation Sampling -- 6.3.1 Well Cuttings -- 6.3.2 Coring -- 6.3.2.1 Single-Wall Coring -- 6.3.2.2 Wireline Coring -- 6.3.2.3 Sidewall Coring -- 6.3.2.4 Split-Spoon Samplers -- 6.3.2.5 Thin-Walled Samplers -- 6.3.2.6 Piston Samplers -- 6.3.2.7 Core Preservation -- 6.4 Well Casing -- 6.4.1 Collapse Strength -- 6.4.2 Casing Diameter -- 6.4.3 Casing Materials -- 6.4.3.1 Mild Steel -- 6.4.3.2 PVC -- 6.4.3.3 Fiberglass -- 6.4.3.4 Stainless Steel -- 6.4.3.5 Coated Mild Steel -- 6.5 Well Completions -- 6.5.1 Well Screen Type -- 6.5.2 Filter Pack -- 6.5.3 Perforated Completions -- 6.5.4 Open-Hole Completions and Liners -- 6.6 Well Development -- 6.6.1 Introduction -- 6.6.2 Well Development Methods -- 6.6.2.1 Over Pumping -- 6.6.2.2 Surging -- 6.6.2.3 Jetting -- 6.6.2.4 Dispersants and Other Additives -- 6.6.2.5 Acidification. , References -- 7 Aquifer Pumping Tests -- 7.1 Aquifer Performance Test Design -- 7.1.1 Observation Wells -- 7.1.2 Test Duration and Pumping Rates -- 7.1.3 Pumping Rate and Water Level Data Collection -- 7.1.4 Practical Recommendations -- 7.2 Aquifer Performance Test Interpretation -- 7.2.1 Correction for Extraneous Impacts on Aquifer Water Levels (Detrending) -- 7.2.2 Conceptual or Theoretical Model and Semilog Plots -- 7.2.3 Early Test Data -- 7.3 Analytical Methods -- 7.3.1 Thiem Method -- 7.3.2 Theis Non-equilibrium Equation -- 7.3.3 Cooper-Jacob Modification of the Theis Equation -- 7.3.4 Cooper and Jacob Distance-Drawdown Method -- 7.3.5 Cooper and Jacob Modification of the Theis Equation for Recovery Phase -- 7.3.6 De Glee's Method-Steady-State Pumping of a Leaky Confined Aquifer -- 7.3.7 Hantush-Walton Method -- 7.3.8 Boulton and Neuman Methods for Unconfined Aquifers -- 7.3.9 Partially Penetrating Wells -- 7.3.10 Anisotropic Aquifers -- 7.3.11 Dual-Porosity System -- 7.4 Numerical Aquifer Test Interpretation Techniques -- 7.5 Estimating Transmissivity from Specific Capacity Data -- 7.6 Tidal Fluctuation Methods -- 7.7 Hydraulic Tomography -- 7.8 Data Analysis: What Do the Data Mean -- References -- 8 Slug, Packer, and Pressure Transient Testing -- 8.1 Slug Tests -- 8.2 Slug Testing Procedures -- 8.3 Multilevel Slug Tests -- 8.4 Slug Test Data Interpretation -- 8.4.1 Hvorslev Method -- 8.4.2 Bouwer and Rice -- 8.4.3 Cooper et al. Method -- 8.4.4 Comparison of Hvorslev, Bouwer and Rice, and Cooper et al. Methods -- 8.4.5 Oscillatory Response -- 8.4.6 Alternative Slug Test Interpretation Methods -- 8.5 Interference Tests -- 8.6 Packer Tests -- 8.6.1 Packer Testing Procedures -- 8.6.2 Potential Error Sources -- 8.6.3 Packer Test Data Analysis -- 8.6.4 Injection and Lugeon Tests -- 8.7 Dipole-Flow Tests -- 8.8 Pressure Transient Testing. , 8.8.1 Introduction -- 8.8.2 Data and Analysis Procedures -- 8.8.3 Step-Rate Injection Tests -- References -- 9 Small-Volume Petrophysical, Hydraulic, and Lithological Methods -- 9.1 Introduction -- 9.2 Core Analyses -- 9.2.1 Porosity Measurement -- 9.2.2 Hydraulic Conductivity and Permeability Measurement -- 9.2.3 Analyses of Unconsolidated Sediments -- 9.2.4 Core-Flow Tests -- 9.2.5 Mercury-Injection Porosimetry -- 9.3 Minipermeameter -- 9.4 Sand Grain Size Analysis -- 9.4.1 Grain Size Analysis Procedures -- 9.4.2 Estimation of Permeability from Grain Size Data -- 9.5 Lithological Analysis -- 9.5.1 Well Cutting and Core Descriptions -- 9.5.2 Thin-Section Petrography -- 9.5.3 Scanning Electron Microscopy and Electron Microprobe Analyses -- 9.5.4 X-Ray Diffractometry -- References -- 10 Borehole Geophysical Techniques -- 10.1 Introduction -- 10.2 Quality Assurance and Quality Control -- 10.3 Caliper Logs -- 10.4 Natural Gamma Ray Log -- 10.5 Electrical and Resistivity Logs -- 10.5.1 Spontaneous Potential -- 10.5.2 Resistivity Logs -- 10.6 Sonic (Acoustic) Logs -- 10.7 Nuclear Logging -- 10.7.1 Density Log -- 10.7.2 Neutron Log -- 10.8 Flowmeter Logs -- 10.8.1 Introduction -- 10.8.2 Spinner Flowmeter -- 10.8.3 Electromagnetic Borehole Flowmeter (EBF) -- 10.8.4 Heat-Pulse Flowmeter -- 10.8.5 Interpretation of Flowmeter Log Data -- 10.9 Temperature and Fluid Resistivity Logs -- 10.10 Borehole Imaging Logs -- 10.10.1 Borehole Video Survey -- 10.10.2 Optical Televiewer -- 10.10.3 Acoustic-Televiewer Log -- 10.10.4 Microresistivity Imaging Logs -- 10.11 Nuclear Magnetic Resonance Logs -- 10.12 Geochemical Logs -- 10.13 Cased-Hole Logs -- 10.13.1 Cased-Hole Logging Techniques -- 10.13.2 Hydrogeological Applications of Cased Hole Geophysical Logs -- 10.14 Development of Borehole Geophysical Logging Programs -- References -- 11 Surface and Airborne Geophysics. , 11.1 Introduction -- 11.2 Electrical Resistivity and Electromagnetic Techniques -- 11.3 DC Resistivity Method -- 11.4 Electromagnetic Surveys -- 11.4.1 Frequency Domain Electromagnetic Surveys -- 11.4.2 Time-Domain Electromagnetic (TDEM) Soundings -- 11.5 Self Potential -- 11.6 Induced Polarization -- 11.7 Applications of Resistivity and EM Surface Geophysics to Groundwater Investigations -- 11.7.1 Mapping of Saline-Water Interface -- 11.7.2 Depth to the Water Table -- 11.7.3 Formation and Aquifer Mapping -- 11.7.4 Mapping of Recharge Areas -- 11.7.5 Mapping Contaminant Plumes -- 11.7.6 Mapping of Regional Aquifer Flow Orientation (Fractured Rock Aquifers) -- 11.8 Ground-Penetrating Radar -- 11.9 Surface Nuclear Magnetic Resonance -- 11.10 Magnetotellurics -- 11.11 Seismic Reflection and Refraction -- 11.12 Gravity -- 11.12.1 Introduction -- 11.12.2 Relative Gravity Surveys -- 11.12.3 Applications of Microgravity Surveys to Groundwater Investigations -- 11.12.4 Gravity Recovery and Climate Experiment (GRACE) -- 11.13 Airborne Geophysics -- 11.13.1 Airborne Electromagnetic Methods -- 11.13.2 Mapping of Bottom and Top of Aquifers -- 11.13.3 Mapping Incised Pleistocene Valleys -- 11.13.4 Groundwater Salinity Mapping -- 11.13.5 Managed Aquifer Recharge Screening -- References -- 12 Direct-Push Technology -- 12.1 Introduction -- 12.2 Groundwater Sampling -- 12.3 Point-in-Time Samplers -- 12.3.1 Sealed-Screen Samplers -- 12.3.2 Exposed-Screen Samplers -- 12.3.3 Dual-Tube Coring and Groundwater Sampling -- 12.4 Direct-Push Monitoring Wells -- 12.5 Formation Testing -- 12.5.1 DPT Slug Tests -- 12.5.2 Direct-Push Permeameter -- 12.5.3 Direct-Push Injection Logger and Hydraulic Profiling Tool -- 12.5.4 Direct-Push Flowmeter Logging -- 12.5.5 Electrical Conductivity Logging -- 12.5.6 Hydostratigraphic Profiling -- 12.6 Cone Penetration Test -- References. , 13 Tracer Tests.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-03-01
    Description: The Avon Park Formation (middle Eocene) in central Florida, U.S.A., contains shallow-water carbonates that have been replaced by dolomite to varying degrees, ranging from partially replaced limestones, to highly porous sucrosic dolostones, to, less commonly, low-porosity dense dolostones. The relationships between dolomitization and porosity and permeability were studied focusing on three 305-m-long cores taken in the City of Daytona Beach. Stable-isotope data from pure dolostones (mean {delta}18O = +3.91{per thousand} V-PDB) indicate dolomite precipitation in Eocene penesaline pore waters, which would be expected to have been at or above saturation with respect to calcite. Nuclear magnetic log-derived porosity and permeability data indicate that dolomitization did not materially change total porosity values at the bed and formation scale, but did result in a general increase in pore size and an associated substantial increase in permeability compared to limestone precursors. Dolomitization differentially affects the porosity and permeability of carbonate strata on the scale of individual crystals, beds, and formations. At the crystal scale, dolomitization occurs in a volume-for-volume manner in which the space occupied by the former porous calcium carbonate is replaced by a solid dolomite crystal with an associated reduction in porosity. Dolomite crystal precipitation was principally responsible for calcite dissolution both at the actual site of dolomite crystal growth and in the adjoining rock mass. Carbonate is passively scavenged from the formation, which results in no significant porosity change at the formation scale. Moldic pores after allochems formed mainly in beds that experienced high degrees of dolomitization, which demonstrates the intimate association of the dolomitization process with carbonate dissolution. The model of force of crystallization-controlled replacement provides a plausible explanation for key observations concerning the dolomitization process in the Avon Park Formation and elsewhere: (1) volume-for-volume replacement at a crystal scale, (2) coupled growth of dolomite crystals and dissolution of host calcium carbonate matrix, and (3) automorphic replacement by euhedral dolomite crystals. The force-of-crystallization model also does not require an influx of externally derived water that is undersaturated with respect to calcite to dissolve calcite, a fact that could simplify diagenetic models of porosity generation in dolostones. The later addition of external carbonate can result in a substantial reduction in porosity by the precipitation of dolomite cement, which could convert a high porosity sucrosic dolostone into a dense "Paleozoic type" dolostone.
    Print ISSN: 1527-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...