GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AGU (American Geophysical Union)  (1)
  • Springer  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of oceanography 51 (1995), S. 499-517 
    ISSN: 1573-868X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract We examine the difference in modeled thermohaline circulation under an atmosphere with no heat capacity (NHC) and infinite heat capacity (IHC) in a series of numerical experiments using the Bryan/Cox OGCM. An NHC atmosphere allows ocean sea surface temperatures to respond to changes in oceanic poleward heat transport, inferring an atmosphere that is allowed to seek its equilibrium temperature, whereas an IHC atmosphere does not. This is responsible for the following different behaviour patterns under the two atmospheres: 1) under NHC atmosphere, oceanic thermal oscillation persists, whereas under IHC atmosphere it does not; 2) under NHC atmosphere, the oceanic thermohaline circulation is less sensitive to high latitude freshening than under IHC atmosphere; 3) under either atmosphere, multiple equilibrium solutions are possible. However, under NHC atmosphere, two equilibria of the thermohaline circulation are generated in the same way as in the GFDL fully coupled model, while under IHC atmosphere, they are not.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Flow of dense shelf water provide an efficient mechanism for pumping CO 2 to the deep ocean along the continental shelf slope, particularly around the Antarctic bottom water (AABW) formation areas where much of the global bottom water is formed. However, the contribution of the formation of AABW to sequestering anthropogenic carbon ( C ant ) and its consequences remain unclear. Here, we show prominent transport of C ant (25.0 ± 4.7 Tg C yr −1 ) into the deep ocean (〉2,000 m) in four AABW formation regions around Antarctica based on an integrated observational data set (1974–2018). This maintains a lower C ant in the upper waters than that of other open oceans to sustain a stronger CO 2 uptake capacity (16.9 ± 3.8 Tg C yr −1 ). Nevertheless, the accumulation of C ant can further trigger acidification of AABW at a rate of −0.0006 ± 0.0001 pH unit yr −1 . Our findings elucidate the prominent role of AABW in controlling the Southern Ocean carbon uptake and storage to mitigate climate change, whereas its side effects (e.g., acidification) could also spread to other ocean basins via the global ocean conveyor belt. Plain Language Summary The Southern Ocean is thought to uptake and store a large amount of anthropogenic CO 2 ( C ant ), but little attention has been paid to the Antarctic coastal regions in the south of 60°S, mainly due to the lack of observations. Based on an integrated data set, we discovered the deep penetration of C ant and a visible pattern of relatively high concentration of C ant along the AABW formation pathway, and the concentration of C ant along the shelf‐slope is higher than that of other marginal seas at low‐mid latitudes, implying a highly effective C ant transport in AABW formation areas. We also found strong upper‐layer CO 2 uptake and a significant acidification rate in the deep waters of the Southern Ocean due to the AABW‐driven CO 2 transport, which is 3 times faster than those in other deep oceans. It is therefore crucial to understand how the Antarctic shelf regions affect the global carbon cycle through the uptake and transport of anthropogenic CO 2 , which also drives acidification in the other ocean basins. Key Points We show evidence for the accumulation of C ant along the Antarctic shelf‐slope into the deep ocean The process of AABW formation drives C ant downward transport at 25.0 ± 4.7 Tg C yr −1 , sustaining the CO 2 uptake in the surface ocean This further triggers acidification of AABW at a rate of −0.0006 ± 0.0001 pH unit yr −1 , which is faster than in other deep oceans
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...