Skip to main content
Log in

The different behaviour of modeled ocean circulation under an atmosphere with different heat capacity

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

We examine the difference in modeled thermohaline circulation under an atmosphere with no heat capacity (NHC) and infinite heat capacity (IHC) in a series of numerical experiments using the Bryan/Cox OGCM. An NHC atmosphere allows ocean sea surface temperatures to respond to changes in oceanic poleward heat transport, inferring an atmosphere that is allowed to seek its equilibrium temperature, whereas an IHC atmosphere does not. This is responsible for the following different behaviour patterns under the two atmospheres: 1) under NHC atmosphere, oceanic thermal oscillation persists, whereas under IHC atmosphere it does not; 2) under NHC atmosphere, the oceanic thermohaline circulation is less sensitive to high latitude freshening than under IHC atmosphere; 3) under either atmosphere, multiple equilibrium solutions are possible. However, under NHC atmosphere, two equilibria of the thermohaline circulation are generated in the same way as in the GFDL fully coupled model, while under IHC atmosphere, they are not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bretherton, F. P. (1982): Ocean climate modeling. p. 93–129. InProgress in Oceanography, Vol. 11, Pergamon.

  • Bryan, F. (1986): High-latitude salinity effects and interhemispheric thermohaline circulation.Nature,323, 25, 301–304.

    Article  Google Scholar 

  • Bryan, F. (1987): Parameter sensitivity of primitive equation ocean general circulation models.J. Phys. Oceanogr.,17, 970–985.

    Article  Google Scholar 

  • Bryan, K. (1969): A numerical method for the study of the circulation of the world ocean.J. Comput. Phys.,4, 347–376.

    Article  Google Scholar 

  • Bryan, K. (1984): Accelerating the convergence to equilibrium of ocean-climate models.J. Phys. Oceanogr.,14, 666–673.

    Article  Google Scholar 

  • Cayan, D. R. (1980): Large scale relationship between sea surface temperature and surface air temperature.Mon. Weather Rev.,108, 1293–1301.

    Article  Google Scholar 

  • Cox, M. D. (1987):GFDL Ocean Model Circular No. 7. GFDL/Princeton University. Princeton, N.J., 1 pp.

    Google Scholar 

  • Delworth, T., S. Manabe and R. J. Stouffer (1993): Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model.J. Climate,6, 1993–2011.

    Article  Google Scholar 

  • Dickson, R. R., J. Meincke, S. A., Malmberg and A. L. Lee (1988): “Great salinity anomaly” in the northern North Atlantic, 1968–82.Prog. Oceanogr., 20, 103–151.

    Article  Google Scholar 

  • Fujio, S., T. Kadowaki and N. Imasato (1992): World ocean circulation diagnostically derived from hydrographic and wind stress fields: I. The velocity field.J. Geophys. Res.,97, 11, 163–11, 176.

    Google Scholar 

  • Giese, B. S. and D. R. Cayan (1993): Surface heat flux parameterizations and tropical Pacific sea surface temperature simulations.J. Geophys. Res.,98, 6979–6989.

    Google Scholar 

  • Haney, L. R. (1971): Surface boundary condition for ocean circulation models.J. Phys. Oceanogr.,1, 241–248.

    Article  Google Scholar 

  • Huang, R. X. and L. Chou (1994): Parameter sensitivity study of the saline circulation.Climate Dynamics,9, 391–409.

    Article  Google Scholar 

  • Manabe, S. and R. J. Stouffer (1988): Two stable equilibria of a coupled ocean-atmosphere model.J. Climate,1, 841–866.

    Article  Google Scholar 

  • Pacanowski, R. C., K. W. Dixon and A. Rosati (1991):GFDL Modular Ocean Model, Users Guide Version 1.0, GFDL Ocean Group Tech. Rep. No. 2, 46 pp.

  • Philander, S. G. H. and A. D. Seigel (1985): Simulation of El Niño of 1982–83. p. 517–541. InCoupled Ocean-Atmosphere Models, ed. by J. Nihoul, Elsevier, New-York.

    Google Scholar 

  • Power, S. and R. Kleeman (1993): Multiple equilibria in a global ocean general circulation model.J. Phys. Oceanogr.,23, 1670–1681.

    Article  Google Scholar 

  • Sarmiento, J. L. and K. Bryan (1982): An ocean transport model for the North Atlantic.J. Geophys. Res.,87, 394–408.

    Google Scholar 

  • Schopf, P. S. (1983): On equatorial waves and El Niño. II: Effects of air-sea thermal coupling.J. Phys. Oceanogr.,13, 1878–1893.

    Article  Google Scholar 

  • Seager, R., S. E. Zebiak and M. A. Cane (1988): A model for tropical Pacific sea surface temperature climatology.J. Geophys. Res.,93, 1265–1280.

    Google Scholar 

  • Semtner, A. J. and R. M. Chervin (1988): A simulation of the global ocean circulation with resolved eddies.J. Geophys. Res.,93, 15502–15522.

    Google Scholar 

  • Stommel, H. (1961): Thermohaline convection with two stable regimes of flow.Tellus,13, 224–230.

    Google Scholar 

  • Zhang, S., R. J. Greatbatch and C. A. Lin (1993): A re-examination of the polar halocline catastrophe and implications for coupled ocean-atmosphere models.J. Phys. Oceanogr.,23, 287–299.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, W. The different behaviour of modeled ocean circulation under an atmosphere with different heat capacity. J Oceanogr 51, 499–517 (1995). https://doi.org/10.1007/BF02270521

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02270521

Keywords

Navigation