GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-03-19
    Description: The Rare Earth Elements (REEs) have been widely used to investigate marine biogeochemical processes as well as the sources and mixing of water masses. However, there are still important uncertainties about the global aqueous REE cycle with respect to the contributions of highly reactive basaltic minerals originating from volcanic islands and the role of Submarine Groundwater Discharge (SGD). Here we present dissolved REE concentrations obtained from waters at the island-ocean interface (including SGD, river, lagoon and coastal waters) from the island of Tahiti and from three detailed open ocean profiles on the Manihiki Plateau (including neodymium (Nd) isotope compositions), which are located in ocean currents downstream of Tahiti. Tahitian fresh waters have highly variable REE concentrations that likely result from variable water–rock interaction and removal by secondary minerals. In contrast to studies on other islands, the SGD samples do not exhibit elevated REE concentrations but have distinctive REE distributions and Y/Ho ratios. The basaltic Tahitian rocks impart a REE pattern to the waters characterized by a middle REE enrichment, with a peak at europium similar to groundwaters and coastal waters of other volcanic islands in the Pacific. However, the basaltic island REE characteristics (with the exception of elevated Y/Ho ratios) are lost during transport to the Manihiki Plateau within surface waters that also exhibit highly radiogenic Nd isotope signatures. Our new data demonstrate that REE concentrations are enriched in Tahitian coastal water, but without multidimensional sampling, basaltic island Nd flux estimates range over orders of magnitude from relatively small to globally significant. Antarctic Intermediate Water (AAIW) loses its characteristic Nd isotopic signature (-6 to-9) around the Manihiki Plateau as a consequence of mixing with South Equatorial Pacific Intermediate Water (SEqPIW), which shows more positive values (-1 to -2). However, an additional Nd input/exchange along the pathway of AAIW, eventually originating from the volcanic Society, Tuamotu and Tubuai Islands (including Tahiti), is indicated by an offset from the mixing array of AAIW and SEqPIW to more radiogenic Nd isotope compositions.
    Type: Article , PeerReviewed
    Format: text
    Format: image
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: The Asian summer monsoon affects the lives of billions of people. With the aim of identifying geochemical tracers for the monsoon-related freshwater input from the major rivers draining into the Bay of Bengal (BoB) and the Andaman Sea (AnS), we have analyzed the yttrium and rare earth element (YREE) concentration of surface seawater samples from various locations spanning the Andaman Islands in 2011 to 2013. In some locations, samples have been taken in March, July, and November 2011, thus spanning the seasonal cycle and including different monsoon phases. Generally, the YREE patterns are similar to those reported for offshore samples from the BoB and AnS in January 1997, with seawater-normalized patterns of most samples characterized by middle REE enrichments. An enhancement of these middle REE bulges accompanies large increases in dissolved REE concentrations from streams and sediment-rich areas such as mangrove environments. Conversely, some samples, in particular those taken 1–2 days after heavy rainfall in March 2011, show pronounced REE scavenging accompanied by the preferential removal of dissolved light REEs (LREEs) and by higher Y/Ho ratios. The Nd isotope signature of the remaining dissolved REE phase of these low YREE samples is more radiogenic than local rocks and sediments. The time series at a location away from local input sources show remarkably similar REE patterns and concentrations in March and July. Then in October–November, following the peak in monsoon-induced river discharge, the dissolved REE concentrations increase by almost a factor of two, whereas Nd isotopes become less radiogenic by 1.5 εNd units. These unradiogenic values are found at the same site in the winter dry season of the following year, demonstrating the decoupling of sea surface salinity (SSS) and Nd. The large sub-annual variability of YREE concentrations and Nd isotopes encountered was likely caused by the conversion of YREE from the dissolved (probably colloidal) pool to the labile particulate fraction. The comparison of unfiltered and filtered sample concentrations reveals the existence of a large labile particulate pool in the BoB and AnS that most likely originates from the massive river sediment fluxes and is instrumental in the seasonal changes observed.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU
    In:  Reviews of Geophysics, 40 (1).
    Publication Date: 2020-06-03
    Description: The radiogenic isotope composition of dissolved trace metals in the ocean represents a set of relatively new and not yet fully exploited tracers with a large potential for oceanographic and paleoceanographic research on timescales from the present back to at least 60 Ma. The main topic of this review are those trace metals with oceanic residence times on the order of or shorter than the global mixing time of the ocean (Nd, Pb, Hf, and, in addition, Be). Their isotopic composition in the ocean has varied as a function of changes in paleocirculation, source provenances, style and intensity of weathering on the continents, as well as orogenic processes. The relative importance of these processes for each trace metal is evaluated, which is a prerequisite for reliable interpretation of their time series in terms of changes in paleocirculation or weathering inputs. This analysis of processes includes a discussion of the long-term isotopic evolution of Sr and Os, which are well mixed in the ocean and have thus not been influenced by circulation changes. The radiogenic isotope evolution of those trace metals with intermediate oceanic residence times can be used as paleoceanographic proxies to reconstruct paleocirculation and weathering inputs into the ocean. This is demonstrated by studies from different ocean basins, mainly carried out on ferromanganese crusts, which show that radiogenic trace metal isotopes provide important new insights and can complement results obtained by other well-established paleoceanographic tracers such as carbon isotopes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The upwelling area off Peru is characterized by exceptionally high rates of primary productivity, mainly dominated by diatoms, which require dissolved silicic acid (dSi) to construct their frustules. The silicon isotope compositions of dissolved silicic acid (δ 30 Si dSi ) and biogenic silica (δ 30 Si bSi ) in the ocean carry information about dSi utilization, dissolution, and water mass mixing. Diatoms are preserved in the underlying sediments and can serve as archives for past nutrient conditions. However, the factors influencing the Si isotope fractionation between diatoms and seawater are not fully understood. More δ 30 Si bSi data in today’s ocean are required to validate and improve the understanding of paleo records. Here, we present the first δ 30 Si bSi data (together with δ 30 Si dSi ) from the water column in the Peruvian Upwelling region. Samples were taken under strong upwelling conditions and the bSi collected from seawater consisted of more than 98% diatoms. The δ 30 Si dSi signatures in the surface waters were higher (+1.7‰ to +3.0‰) than δ 30 Si bSi (+1.0‰ to +2‰) with offsets between diatoms and seawater (Δ 30 Si) ranging from −0.4‰ to −1.0‰. In contrast, δ 30 Si dSi and δ 30 Si bSi signatures were similar in the subsurface waters of the oxygen minimum zone (OMZ) as a consequence of a decrease in δ 30 Si dSi . A strong relationship between δ 30 Si bSi and [dSi] in surface water samples supports that dSi utilization of the available pool (70 and 98%) is the main driver controlling δ 30 Si bSi . A comparison of δ 30 Si bSi samples from the water column and from underlying core-top sediments (δ 30 Si bSi_ sed. ) in the central upwelling region off Peru (10°S and 15°S) showed good agreement (δ 30 Si bSi_ sed. = +0.9‰ to +1.7‰), although we observed small differences in δ 30 Si bSi depending on the diatom size fraction and diatom assemblage. A detailed analysis of the diatom assemblages highlights apparent variability in fractionation among taxa that has to be taken into account when using δ 30 Si bSi data as a paleo proxy for the reconstruction of dSi utilization in the region.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: Barium (Ba) isotopes are a promising new tracer for riverine freshwater input to the ocean and marine biogeochemical cycling. However, many processes that affect Ba cycling at continental margins have not yet been investigated with respect to Ba isotope fractionation. Here, we present a comprehensive data set of Ba concentration and isotope data for water column, pore water and sediment samples from Kiel Bight, a seasonally stratified and hypoxic fjord in the southwestern Baltic Sea. The surface water Ba concentration and Ba isotope inventory of the water column can generally be explained by mixing of riverine freshwater and Atlantic seawater. However, the deep-water below the seasonal pycnocline (10 - 15 m water depth) is characterized by a pronounced positive Ba concentration anomaly (up to 915 nM) that is accompanied by a δ138Ba of ~+0.25 ‰, which is lighter than expected from the seawater-freshwater mixing line (Ba: 77 nM, δ138Ba: +0.32 ‰ at a salinity of 18). Pore water profiles indicate a Ba flux across the sediment-water interface, which contributes to the enrichment in isotopically light Ba in the deep-water. Pore waters of surface sediments and deep-waters are oversaturated with respect to barite. Therefore, barite dissolution is unlikely to account for the benthic Ba flux. Water column Ba concentrations closely correlate with those of the nutrients phosphate and silica, which are removed from surface waters by biological processes and recycled from the sediment by diffusion across the sediment-water interface. As nutrient-to-Ba ratios differ among sites and from those observed in open-marine systems, we propose that Ba is removed from surface waters by adsorption onto biogenic particles (rather than assimilation) and regenerated within surface sediments upon organic matter degradation. Pore water data for subsurface sediments in Kiel Bight indicate preferential transfer of isotopically heavy Ba into an authigenic phase during early diagenesis. Quantifying the burial flux associated with this authigenic Ba phase along continental margins could potentially help to settle the isotopic imbalance between known Ba source and sink fluxes in the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: The global silicon (Si) cycle plays a critical role in regulating the biological pump and the carbon cycle in the oceans. A promising tool to reconstruct past dissolved silicic acid (DSi) concentrations is the silicon isotope signature of radiolaria (δ 30 Si rad ), siliceous zooplankton that dwells at subsurface and intermediate water depths. However, to date, only a few studies on sediment δ 30 Si rad records are available. To investigate its applicability as a paleo proxy, we compare the δ 30 Si rad of different radiolarian taxa and mixed radiolarian samples from surface sediments off Peru to the DSi distribution and its δ 30 Si signatures (δ 30 Si DSi ) along the coast between the equator and 15°S. Three different radiolarian taxa were selected according to their specific habitat depths of 0–50 m ( Acrosphaera murrayana ), 50–100 m ( Dictyocoryne profunda/truncatum ), and 200–400 m ( Stylochlamydium venustum ). Additionally, samples containing a mix of species from the bulk assemblage covering habitat depths of 0 to 400 m have been analyzed for comparison. We find distinct δ 30 Si rad mean values of +0.70 ± 0.17‰ ( Acro ; 2 SD), +1.61 ± 0.20 ‰ ( Dictyo ), +1.19 ± 0.31 ‰ ( Stylo ) and +1.04 ± 0.19 ‰ (mixed radiolaria). The δ 30 Si values of all individual taxa and the mixed radiolarian samples indicate a significant ( p 〈 0.05) inverse relationship with DSi concentrations of their corresponding habitat depths. However, only δ 30 Si of A. murrayana are correlated to DSi concentrations under normally prevailing upwelling conditions. The δ 30 Si of Dictyocoryne sp., Stylochlamydium sp., and mixed radiolaria are significantly correlated to the lower DSi concentrations either associated with nutrient depletion or shallower habitat depths. Furthermore, we calculated the apparent Si isotope fractionation between radiolaria and DSi (Δ 30 Si ∼ 30 ε = δ 30 Si rad − δ 30 Si DSi ) and obtained values of −1.18 ± 0.17 ‰ ( Acro ), −0.05 ± 0.25 ‰ ( Dictyo ), −0.34 ± 0.27 ‰ ( Stylo ), and −0.62 ± 0.26 ‰ (mixed radiolaria). The significant differences in Δ 30 Si between the order of Nassellaria ( A. murrayana ) and Spumellaria ( Dictyocoryne sp. and Stylochlamydium sp.) may be explained by order-specific Si isotope fractionation during DSi uptake, similar to species-specific fractionation observed for diatoms. Overall, our study provides information on the taxon-specific fractionation factor between radiolaria and seawater and highlights the importance of taxonomic identification and separation to interpret down-core records.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The sluggish water mass transport in the deeper North Pacific Ocean complicates the assessment of formation, spreading and mixing of surface, intermediate and deep-water masses based on standard hydrographic parameters alone. Geochemical tracers sensitive to water mass provenance and mixing allow to better characterize the origin and fate of the prevailing water masses. Here, we present dissolved neodymium (Nd) isotope compositions (ε Nd ) and concentrations ([Nd]) obtained along a longitudinal transect at ∼180°E from ∼7°S to ∼50°N. The strongest contrast in Nd isotope signatures is observed in equatorial regions between surface waters (ε Nd ∼0 at 4.5°N) and Lower Circumpolar Deep Water (LCDW) prevailing at 4500 m depth (ε Nd = −6.7 at 7.2°N). The Nd isotope compositions of equatorial surface and subsurface waters are strongly influenced by regional inputs from the volcanic rocks surrounding the Pacific, which facilitates the identification of the source regions of these waters and seasonal changes in their advection along the equator. Highly radiogenic weathering inputs from Papua-New-Guinea control the ε Nd signature of the equatorial surface waters and strongly alter the ε Nd signal of Antarctic Intermediate Water (AAIW) by sea water-particle interactions leading to an ε Nd shift from −5.3 to −1.7 and an increase in [Nd] from 8.5 to 11.0 pmol/kg between 7°S and 15°N. Further north in the open North Pacific, mixing calculations based on ε Nd , [Nd] and salinity suggest that this modification of the AAIW composition has a strong impact on intermediate water ε Nd signatures of the entire region allowing for improved identification of the formation regions and pathways of North Pacific Intermediate Water (NPIW). The deep-water Nd isotope signatures indicate a southern Pacific origin and subsequent changes along its trajectory resulting from a combination of water mass mixing, vertical processes and Nd release from seafloor sediments, which precludes Nd isotopes as quantitative tracers of deep-water mass mixing. Moreover, comparison with previously reported data indicates that the Nd isotope signatures and concentrations below 100 m depth essentially remained stable over the past decades, which suggests constant impacts of water mass advection and mixing as well as of non-conservative vertical exchange and bottom release.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-12-24
    Description: Permafrost is an Essential Climate Variable (ECV) within the Global Climate Observing System (GCOS), which is characterized by subsurface temperatures and the depth of the seasonal thaw layer. Complementing ground-based monitoring networks, the Permafrost CCI project funded by the European Space Agency (ESA) 2018-2021 will establish Earth Observation (EO) based products for the permafrost ECV spanning the last two decades. Since ground temperature and thaw depth cannot be directly observed from space-borne sensors, we will ingest a variety of satellite and reanalysis data in a ground thermal model, which allows to quantitatively characterize the changing permafrost systems in Arctic and High-Mountain areas. As recently demonstrated for the Lena River Delta in Northern Siberia, the algorithm uses remotely sensed data sets of Land Surface Temperature (LST), Snow Water Equivalent (SWE) and landcover to drive the transient permafrost model CryoGrid 2, which yields ground temperature at various depths, in addition to thaw depth. For the circumpolar CCI product, we aim for a spatial resolution between 10 and 1km, but ensemble runs will be performed for each pixel to represent the subgrid variability of snow and land cover. The performance of the transient algorithm crucially depends on the correct representation of ground properties, in particular ice and organic contents. Therefore, the project will compile a new subsurface stratigraphy product which also holds great potential for improving Earth System Model results in permafrost environments. We report on simulation runs for various permafrost regions and characterize the accuracy and ability to reproduce trends against ground-based data. Finally, we evaluate the feasibility of future “permafrost reanalysis” products, exploiting the information content of various satellite products to deliver the best possible estimate for the permafrost thermal state over a range of spatial scales.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-12-24
    Description: A Permafrost Information System (PerSys) has been setup as part of the GlobPermafrost ESA DUE GlobPermafrost project (2016-2019, www.globpermafrost.info). This includes a data catalogue as well as a WebGIS, both linked to the Pangaea repository for easy data access. The thematic products available include InSAR-based land surface deformation maps, rock glacier velocity fields, spatially distributed permafrost model outputs, land surface properties and changes, and ground-fast lake ice. Extended permafrost modelling (time series) is implemented in the new ESA CCI+ Permafrost project (2018-2021), which will provide the key for our understanding of the changes of surface features over time. Special emphasis in CCI+ Permafrost will be on the evaluation and development of land surface models to gain better understanding of the impact of climate change on permafrost and land-atmosphere exchange. Additional focus will be on documentation of kinematics from rock glaciers in several mountain regions across the world. We will present an overview on technical developments made within GlobPermafrost and demonstrate its utility and challenges for an area prone to change of permafrost features. We will focus on the central Yamal Peninsula and the unusually warm years of 2012 and 2016. Conditions of 2012 triggered widespread retrogressive thaw slumps and the development of a gas emission crater. Thaw slumps have been reactivated in 2016, the first year with extensive coverage of Sentinel-1 as well as Sentinel-2 data. We present the documentation of these developments based on InSAR subsidence, Landsat trend analyses, ground fast lake ice, Sentinel-2 landcover information as well as a time series of the first version of ground temperatures from the ESA CCI+ Permafrost project. While landcover documents the occurrence of disturbances, InSAR provides insight into soil properties and impacts of unusually warm conditions during the unfrozen period. These space-based observations have been evaluated by in situ measurements at the long-term monitoring site Vaskiny Datchi. Ground fast lake ice and ground temperature modelling results provide additional insight into interannual variability.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...