GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: The global silicon (Si) cycle plays a critical role in regulating the biological pump and the carbon cycle in the oceans. A promising tool to reconstruct past dissolved silicic acid (DSi) concentrations is the silicon isotope signature of radiolaria (δ 30 Si rad ), siliceous zooplankton that dwells at subsurface and intermediate water depths. However, to date, only a few studies on sediment δ 30 Si rad records are available. To investigate its applicability as a paleo proxy, we compare the δ 30 Si rad of different radiolarian taxa and mixed radiolarian samples from surface sediments off Peru to the DSi distribution and its δ 30 Si signatures (δ 30 Si DSi ) along the coast between the equator and 15°S. Three different radiolarian taxa were selected according to their specific habitat depths of 0–50 m ( Acrosphaera murrayana ), 50–100 m ( Dictyocoryne profunda/truncatum ), and 200–400 m ( Stylochlamydium venustum ). Additionally, samples containing a mix of species from the bulk assemblage covering habitat depths of 0 to 400 m have been analyzed for comparison. We find distinct δ 30 Si rad mean values of +0.70 ± 0.17‰ ( Acro ; 2 SD), +1.61 ± 0.20 ‰ ( Dictyo ), +1.19 ± 0.31 ‰ ( Stylo ) and +1.04 ± 0.19 ‰ (mixed radiolaria). The δ 30 Si values of all individual taxa and the mixed radiolarian samples indicate a significant ( p 〈 0.05) inverse relationship with DSi concentrations of their corresponding habitat depths. However, only δ 30 Si of A. murrayana are correlated to DSi concentrations under normally prevailing upwelling conditions. The δ 30 Si of Dictyocoryne sp., Stylochlamydium sp., and mixed radiolaria are significantly correlated to the lower DSi concentrations either associated with nutrient depletion or shallower habitat depths. Furthermore, we calculated the apparent Si isotope fractionation between radiolaria and DSi (Δ 30 Si ∼ 30 ε = δ 30 Si rad − δ 30 Si DSi ) and obtained values of −1.18 ± 0.17 ‰ ( Acro ), −0.05 ± 0.25 ‰ ( Dictyo ), −0.34 ± 0.27 ‰ ( Stylo ), and −0.62 ± 0.26 ‰ (mixed radiolaria). The significant differences in Δ 30 Si between the order of Nassellaria ( A. murrayana ) and Spumellaria ( Dictyocoryne sp. and Stylochlamydium sp.) may be explained by order-specific Si isotope fractionation during DSi uptake, similar to species-specific fractionation observed for diatoms. Overall, our study provides information on the taxon-specific fractionation factor between radiolaria and seawater and highlights the importance of taxonomic identification and separation to interpret down-core records.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...