GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 94 (B11). pp. 16023-16035.
    Publication Date: 2018-03-06
    Description: A seismic refraction profile recorded along the geologic strike of the Chugach Mountains in southern Alaska shows three upper crustal high-velocity layers (6.9, 7.2, and 7.6 km/s) and a unique pattern of strongly focussed echelon arrivals to a distance of 225 km. The group velocity of the ensemble of echelon arrivals is 6.4 km/s. Modeling of this profile with the reflectivity method reveals that the echelon pattern is due to peg-leg multiples generated from with a low-velocity zone between the second and third upper crustal high-velocity layers. The third high-velocity layer (7.6 km/s) is underlain at 18 km depth by a pronounced low-velocity zone that produces a seismic shadow wherein zone peg-leg multiples are seen as echelon arrivals. The interpretation of these echelon arrivals as multiples supersedes an earlier interpretation which attributed them to successive primary reflections arising from alternating high- and low-velocity layers. Synthetic seismogram modeling indicates that a low-velocity zone with transitional upper and lower boundaries generates peg-leg multiples as effectively as one with sharp boundaries. No PmP or Pn arrivals from the subducting oceanic Moho at 30 km depth beneath the western part of the line are observed on the long-offset (90-225 km) data. This may be due to a lower crustal waveguide whose top is the high-velocity (7.6 km/s) layer and whose base is the Moho. A deep (~54 km) reflector is not affected by the waveguide and has been identified in the data. Although peg-leg multiples have been interpreted on some long-range refraction profiles that sound to upper mantle depths, the Chugach Mountains profile is one of the few crustal refraction profiles where peg-leg multiples are clearly observed. This study indicates that multiple and converted phases may be more important in seismic refraction/wide-angle reflection profiles than previously recognized.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research - Solid Earth, 94 (B1). pp. 625-636.
    Publication Date: 2018-03-06
    Description: During a seismic reflection survey conducted by the California Consortium for Crustal Studies in the Basin and Range Province west of the Whipple Mountains, SE California, a piggyback experiment was carried out to collect intermediate offset data (12–31 km). These data were obtained by recording the Vibroseis energy with a second, passive recording array, deployed twice at fixed positions at opposite ends of the reflection lines. The reflection midpoints fall into a 3-km-wide and 15-km-long region in Vidal Valley, roughly parallel to a segment of one of the near-vertical reflection profiles. This data set makes three unique contributions to the geophysical study of this region. (1) From forward modeling of the observed travel times using ray-tracing techniques, a shallow layer with velocities ranging from 6.0 to 6.5 km/s was found. This layer dips to the south from 2-km depth near the Whipple Mountains to a depth of 5-km in Rice Valley. These depths correspond closely to the westward projection of the Whipple detachment fault, which is exposed 1 km east of the near-vertical profiles in the Whipple Mountains. (2) On the near-vertical profile, the reflections from the mylonitically deformed lower plate at upper crustal and mid crustal depths are seen to cease underneath a sedimentary basin in Vidal Valley. However, the piggyback data, which undershoot this basin, show that these reflections are continuous beneath the basin. Thus near-surface energy transmission problems were responsible for the apparent lateral termination of the reflections on the near-vertical reflection profile. (3) The areal distribution of the midpoints allows us to construct a quasi-three-dimensional image on perpendicular profiles; at the cross points we determined the true strike and dip of reflecting horizons. This analysis shows that the reflections from the mylonitically deformed lower plate dip to the southwest westward of the Whipple Mountains and dip to the south southward of the Turtle Mountains. The results of this study support the interpretation of crustal reflectivity in the near-vertical reflection profiles to be related to the mid-Tertiary episode of extension which produced the Whipple metamorphic core complex. This association geometrically suggests a more regionally distributed mechanism for crustal thinning as compared with single detachment fault models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 87 (17). pp. 165-172.
    Publication Date: 2017-02-23
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-03-03
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Eos, Transactions American Geophysical Union, 87 (27). pp. 265-272.
    Publication Date: 2017-02-17
    Description: The highly active subduction zone of southern Chile was the source region of the 1960 Valdivia megathrust earthquake (Mw= 9.5), the largest earthquake ever recorded.This region is currently under investigation by the multidisciplinary TIPTEQ (From the Incoming Plate to Mega-Thrust Earthquake Processes) project, which is studying the structure, state, and deformation of the subduction zone lithosphere. Over 90 days, from December 2004 to February 2005,TIPTEQ scientists on cruise S0181 of the German research vessel (R/V Sonne acquired a broad variety of geophysical and geological data in the research area offshore Chile between 35°S and 48°S (Figure 1).These data include active and passive source seismics, heat flow probing, magnetics, magnetotellurics for studying Earth conductivity, highresolution multibeam bathymetry, and sediment probes from gravity cores.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 113 . B07303.
    Publication Date: 2018-04-25
    Description: A joint interpretation of swath bathymetric, seismic refraction, wide-angle reflection, and multichannel seismic data was used to derive a detailed tomographic image of the Nazca-South America subduction zone system offshore southern Arauco peninsula, Chile at similar to 38 degrees S. Here, the trench basin is filled with up to 2.2 km of sediments, and the Mocha Fracture Zone (FZ) is obliquely subducting underneath the South American plate. The velocity model derived from the tomographic inversion consists of a similar to 7-km-thick oceanic crust and shows P wave velocities typical for mature fast spreading crust in the seaward section of the profile, with uppermost mantle velocities >8.4 km s(-1). In the trench-outer rise area, the top of incoming oceanic plate is pervasively fractured and likely hydrated as shown by extensional faults, horst-and-graben structures, and a reduction of both crustal and mantle velocities. These slow velocities are interpreted in terms of extensional bending-related faulting leading to fracturing and hydration in the upper part of the oceanic lithosphere. The incoming Mocha FZ coincides with an area of even slower velocities and thinning of the oceanic crust (10-15% thinning), suggesting that the incoming fracture zone may enhance the flux of chemically bound water into the subduction zone. Slow mantle velocities occur down to a maximum depth of 6-8 km into the upper mantle, where mantle temperatures are estimated to be 400-430 degrees C. In the overriding plate, the tomographic model reveals two prominent velocity transition zones characterized by steep lateral velocity gradients, resulting in a seismic segmentation of the marine fore arc. The margin is composed of three main domains: (1) a similar to 20 km wide frontal prism below the continental slope with Vp 〈= 3.5 km s(-1), (2) a similar to 50 km area with Vp = 4.5-5.5 km s(-1), interpreted as a paleoaccretionary complex, and (3) the seaward edge of the Paleozoic continental framework with Vp >= 6.0 km s(-1). Frontal prism velocities are noticeably lower than those found in the northern erosional Chile margin, confirming recent accretionary processes in south central Chile.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Solid Earth, 113 . B05410.
    Publication Date: 2019-09-23
    Description: A seismic wide‐angle and refraction experiment was conducted offshore of Nicaragua in the Middle American Trench to investigate the impact of bending‐related normal faulting on the seismic properties of the oceanic lithosphere prior to subduction. On the basis of the reflectivity pattern of multichannel seismic reflection (MCS) data it has been suggested that bending‐related faulting facilitates hydration and serpentinization of the incoming oceanic lithosphere. Seismic wide‐angle and refraction data were collected along a transect which extends from the outer rise region not yet affected by subduction into the trench northwest of the Nicoya Peninsula, where multibeam bathymetric data show prominent normal faults on the seaward trench slope. A tomographic joint inversion of seismic refraction and wide‐angle reflection data yield anomalously low seismic P wave velocities in the crust and uppermost mantle seaward of the trench axis. Crustal velocities are reduced by 0.2–0.5 km s−1 compared to normal mature oceanic crust. Seismic velocities of the uppermost mantle are 7.6–7.8 km s−1 and hence 5–7% lower than the typical velocity of mantle peridotite. These systematic changes in P wave velocity from the outer rise toward the trench axis indicate an evolutionary process in the subducting slab consistent with percolation of seawater through the faulted and fractured lithosphere and serpentinization of mantle peridotites. If hydration is indeed affecting the seismic properties of the mantle, serpentinization might be reaching 12–17% in the uppermost 3–4 km of the mantle, depending on the unknown degree of fracturing and its impact on the elastic properties of the subducting lithosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-05-12
    Description: We use seismic reflection and refraction data to determine crustal structure, to map a fore-arc basin containing 12 km of sediment, and to image the subduction thrust at 35 km depth. Seismic reflection megasequences within the basin are correlated with onshore geology: megasequence X, Late Cretaceous and Paleogene marine passive margin sediments; megasequence Y, a similar to 10,000 km(3) submarine landslide emplaced during subduction initiation at 22 Ma; and megasequence Z, a Neogene subduction margin megasequence. The Moho lies at 17 km beneath the basin center and at 35 km at the southern margin. Beneath the western basin margin, we interpret reflective units as deformed Gondwana fore-arc sediment that was thrust in Cretaceous time over oceanic crust 7 km thick. Raukumara Basin has normal faults at its western margin and is uplifted along its eastern and southern margins. Raukumara Basin represents a rigid fore-arc block > 150 km long, which contrasts with widespread faulting and large Neogene vertical axis rotations farther south. Taper of the western edge of allochthonous unit Y and westward thickening and downlap of immediately overlying strata suggest westward or northwestward paleoslope and emplacement direction rather than southwestward, as proposed for the correlative onshore allochthon. Spatial correlation between rock uplift of the eastern and southern basin margins with the intersection between Moho and subduction thrust leads us to suggest that crustal underplating is modulated by fore-arc crustal thickness. The trench slope has many small extensional faults and lacks coherent internal reflections, suggesting collapse of indurated rock, rather than accretion of > 1 km of sediment from the downgoing plate. The lack of volcanic intrusion east of the active arc, and stratigraphic evidence for the broadening of East Cape Ridge with time, suggests net fore-arc accretion since 22 Ma. We propose a cyclical fore-arc kinematic: rock moves down a subduction channel to near the base of the crust, where underplating drives rock uplift, oversteepens the trench slope, and causes collapse toward the trench and subduction channel. Cyclical rock particle paths led to persistent trench slope subsidence during net accretion. Existing global estimates of fore-arc loss are systematically too high because they assume vertical particle paths. Citation: Sutherland, R., et al. (2009), Reactivation of tectonics, crustal underplating, and uplift after 60 Myr of passive subsidence, Raukumara Basin, Hikurangi-Kermadec fore arc, New Zealand: Implications for global growth and recycling of continents, Tectonics, 28, TC5017, doi: 10.1029/2008TC002356.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 32 . L04308.
    Publication Date: 2018-03-28
    Description: Wide–angle reflection seismic experiments were performed at the Storegga slide offshore Norway in 2002 with the goal to quantify the amount of gas hydrate and free gas in the sediment. Twenty‐two stations with Ocean Bottom Hydrophones (OBH) and Seismometers (OBS) were deployed for a 2D and a 3D experiment. Kirchhoff depth migration is used to transform the seismic wide–angle data into images of the sediment layers and to obtain P wave velocity–depth functions. The gas hydrate and free gas saturations are estimated from the elastic properties of the sediment on the basis of the Frenkel–Gassmann equations. There is 5–15% gas hydrate in the pore space of the sediment in the gas hydrate stability zone (GHSZ). The free gas saturation takes the value of 0.8% for a homogeneous distribution of gas in the pore water and 7% for the model of a patchy gas distribution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-02-15
    Description: In 2005 an amphibious seismic network was deployed on the Chilean forearc between 41.75°S and 43.25°S. 364 local events were observed in a 11-month period. A subset of the P and S arrival times were inverted for hypocentral coordinates, 1-D velocity structure and station delays. Main seismic activity occurred predominantly in a belt parallel to the coast of Chiloé Island in a depth range of 12–30 km presumably related to the plate interface. The 30° inclination of the shallow part of the Wadati-Benioff zone is similar to observations further north indicating that oceanic plate age is not controlling the subduction angle of the shallower part for the Chilean subduction zone. The down-dip termination of abundant intermediate depth seismicity at approximately 70 km depth seems to be related to the young age (and high temperature) of the oceanic plate. Crustal seismicity is associated with the Liquiñe-Ofqui fault zone and active volcanoes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...