GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 28 (1997), S. 545-570 
    ISSN: 0066-4162
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Belowground competition occurs when plants decrease the growth, survival, or fecundity of neighbors by reducing available soil resources. Competition belowground can be stronger and involve many more neighbors than aboveground competition. Physiological ecologists and population or community ecologists have traditionally studied belowground competition from different perspectives. Physiologically based studies often measure resource uptake without determining the integrated consequences for plant performance, while population or community level studies examine plant performance but fail to identify the resource intermediary or mechanism. Belowground competitive ability is correlated with such attributes as root density, surface area, and plasticity either in root growth or in the properties of enzymes involved in nutrient uptake. Unlike competition for light, in which larger plants have a disproportionate advantage by shading smaller ones, competition for soil resources is apparently more symmetric. Belowground competition often decreases with increases in nutrient levels, but it is premature to generalize about the relative importance of above- and belowground competition across resource gradients. Although shoot and root competition are often assumed to have additive effects on plant growth, some studies provide evidence to the contrary, and potential interactions between the two forms of competition should be considered in future investigations. Other research recommendations include the simultaneous study of root and shoot gaps, since their closures may not occur simultaneously, and improved estimates of the belowground neighborhood. Only by combining the tools and perspectives from physiological ecology and population and community biology can we fully understand how soil characteristics, neighborhood structure, and global climate change influence or are influenced by plant competition belowground.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The concentration of carbon dioxide (CO2) in the Earth's atmosphere is rising rapidly, with the potential to alter many ecosystem processes. Elevated CO2 often stimulates photosynthesis, creating the possibility that the terrestrial biosphere will sequester carbon in ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Carbon cycle ; Ecosystem ; Global change ; Respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This study was designed to identify potential effects of elevated CO2 on belowground respiration (the sum of root and heterotrophic respiration) in field and microcosm ecosystems and on the annual carbon budget. We made three sets of respiration measurements in two CO2 treatments, i.e., (1) monthly in the sandstone grassland and in microcosms from November 1993 to June 1994; (2) at the annual peak of live biomass (March and April) in the serpentine and sandstone grasslands in 1993 and 1994; and (3) at peak biomass in the microcosms with monocultures of seven species in 1993. To help understand ecosystem carbon cycling, we also made supplementary measurements of belowground respiration monthly in sandstone and serpentine grasslands located within 500 m of the CO2 experiment site. The seasonal average respiration rate in the sandstone grassland was 2.12 μmol m-2 s-1 in elevated CO2, which was 42% higher than the 1.49 μmol m-2 s-1 measured in ambient CO2 (P=0.007). Studies of seven individual species in the microcosms indicated that respiration was positively correlated with plant biomass and increased, on average, by 70% with CO2. Monthly measurements revealed a strong seasonality in belowground respiration, being low (0–0.5 μmol CO2 m-2 s-1 in the two grasslands adjacent to the CO2 site) in the summer dry season and high (2–4 μmol CO2 m-2 s-1 in the sandstone grassland and 2–7 μmol CO2 m-2 s-1 in the microcosms) during the growing season from the onset of fall rains in November to early spring in April and May. Estimated annual carbon effluxes from the soil were 323 and 440 g C m-2 year-1 for the sandstone grasslands in ambient and elevated CO2. That CO2-stimulated increase in annual soil carbon efflux is more than twice as big as the increase in aboveground net primary productivity (NPPa) and approximately 60% of NPPa in this grassland in the current CO2 environment. The results of this study suggest that below-ground respiration can dissipate most of the increase in photosynthesis stimulated by elevated CO2.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: annual grassland ; carbon-13 ; carbon dioxide ; carbon storage ; serpentine soil ; soil carbon ; statistical power
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract After four growing seasons, elevated CO2 did not significantly alter surface soil C pools in two intact annual grasslands. However, soil C pools in these systems are large compared to the likely changes caused by elevated CO2. We calculated statistical power to detect changes in soil C, using an approach applicable to all elevated CO2 experiments. The distinctive isotopic signature of the fossil-fuel-derived CO2 added to the elevated CO2 treatment provides a C tracer to determine the rate of incorporation of newly-fixed C into soil. This rate constrains the size of the possible effect of eievated CO2 on soil C. Even after four years of treatment, statistical power to detect plausible changes in soil C under elevated CO2 is quite low. Analysis of other elevated CO2 experiments in the literature indicates that either CO2 does not affect soil C content, or that reported CO2 effects on soil C are too large to be a simple consequence of increased plant carbon inputs, suggesting that other mechanisms are involved, or that the differences are due to chance. Determining the effects of elevated CO2 on total soil C and long-term C storage requires more powerful experimental techniques or experiments of longer duration.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...