GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2005-2009  (3)
Document type
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 439 (2006), S. 675-675 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] We have analysed a suite of 12 state-of-the-art climate models and show that ocean warming and sea-level rise in the twentieth century were substantially reduced by the colossal eruption in 1883 of the volcano Krakatoa in the Sunda strait, Indonesia. Volcanically induced cooling of the ocean ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  EPIC3Philosophical transactions of the royal society of london series a-mathematical physical and engineering sciences, 364, pp. 1709-1731, ISBN: 1364-503X (Paper) 14
    Publication Date: 2019-07-17
    Description: Accurate simulation of ice-sheet surface mass balance requires higher spatial resolution than is afforded by typical atmosphereocean general circulation models (AOGCMs),owing, in particular, to the need to resolve the narrowand steep margins where the majority of precipitation and ablation occurs. We have developed a method for calculating massbalance changes by combining ice-sheet average time-series from AOGCM projections for future centuries, both with information from high-resolution climate models run for short periods and with a 20 km ice-sheet mass-balance model. Antarctica contributes negativelyto sea level on account of increased accumulation, while Greenland contributes positively because ablation increases more rapidly. The uncertainty in the results is about 20% for Antarctica and 35% for Greenland. Changes in ice-sheet topography and dynamics are not included, but we discuss their possible effects. For an annual- and area-average warming exceeding 4:5G0:9 K in Greenland and 3:1G0:8 K in the global average, the net surface mass balance of the Greenland ice sheet becomes negative, in which case it is likely that the ice sheet would eventually be eliminated, raising global-average sea level by 7 m.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  EPIC3in: Schellnhuber, J., W. Cramer, N. Nakicenovic, T.Wigley, and G. Yohe (eds.): Avoiding Dangerous Climate Change, Cambridge University Press (Cambridge), pp. 29-36
    Publication Date: 2019-07-17
    Description: Sea level rise is an important aspect of future climate change because, without upgraded coastal defences, it is likely to lead to significant impacts. Here we report on two aspects of sea-level rise that have implications for the avoidance of dangerous climate change and stabilisation of climate. If the Greenland ice sheet were to melt it would raise global sea levels by around 7m. We discuss the likelihood of such an event occurring in the coming centuries. We also examine the time scales associated with sea-level rise and demonstrate that long after atmospheric greenhouse gas concentrations or global temperature have been stabilised coastal impacts may still be increasing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...