GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Atmospheric carbon dioxide concentrations seem to have been several times modern levels during much of the Palaeozoic era (543–248 million years ago), but decreased during the Carboniferous period to concentrations similar to that of today. Given that carbon dioxide is a ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September, 2005
    Description: Minor and trace element records from planktic and benthic foraminifera from Atlantic sediment cores, as well as outputfrom a coupled OA·GCM, were used to investigate the magnitude and distribution of the oceanic response to abrupt Climate events.of the past 20,000 years. The study addressed three major questions: 1) What is the magnitude of high-latitude sea surface temperature and salinity variability during abrupt climate events? 2) Does intermediate depth ventilation change in conjunction with high-latitude climate variability? 3) Are the paleoclimate data consistent with the response of a coupled OAGCM to a freshwater perturbation? To address these questions, analytical methods were implemented for the simultaneous measurement of Mg/Ca, Zn/Ca, Cd/Ca, Mn/Ca and All Ca in foraminiferal samples using inductively-coupled plasma mass spectrometry. Paired records of planktic foraminiferal ()IRO and Mg/Ca from the subpolar North Atlantic reveal trends of increasing temperatures (-3°C) and salinities over the course of the Holocene. The records provide the first evidence of open':'ocean cooling (nearly 2°C) and freshening during the 8.2 kyr event, and suggest similar conditions at 9.3 ka. Benthic foraminiferal Cd/Ca results from an intermediate depth, western South Atlantic core (l,268 ni) are consistent with reduced export into the South Atlantic of North Atlantic Intermediate Water during the Younger Dryas. Paired records. of benthic foraminiferal Mg/Ca and bIRO from two intermediate depth low latitude western Atlantic sites - one from the Florida Current (751 m) and one from the Little Bahama Bank (l,057 m) - provicie insights into the spatial distribution of intermediate depth temperature and sii!.inity variability during" the Younger Dryas. The intermediate depth paleoceanographic temperature and salinity data are consistent with the results of a GFDL R30 freshwater forced model simulation, suggesting that freshwater forcing is a possible driver or amplifier for B011ing-Aller0d to Younger Dryas climate variability. Benthic foraminiferal Cd/Ca results from an intermediate depth Florida Current core (751 m) are consistent with a decrease in the northward penetration of southern source waters within the return flow of the Atlantic meridional overturning circulation (MOC) and an increase in the influence of intermediate depth northern source waters during the Younger Dryas.
    Description: This work was funded by a John Lyons Fellowship and a WHOI Ocean and Climate Change Institute Fellowship. Analyses were funded by the Ocean and Climate Change Institute and the following grants from the National Science Foundation: OCE98-86748, OCE02- 20776, OCE96-33499,ATM05-01391, and OCE04-02565.
    Keywords: Ocean-atmosphere interaction ; Climatic changes
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Nature Publishing Group, 2008. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 1 (2008): 620-624, doi:10.1038/ngeo285.
    Description: The early Holocene deglaciation of the Laurentide Ice Sheet (LIS) is the most recent and best constrained disappearance of a large Northern Hemisphere ice sheet. Its demise is a natural experiment for assessing rates of ice sheet decay and attendant contributions to sea level rise. Here we demonstrate with terrestrial and marine records that the final LIS demise occurred in two stages of rapid melting from ~9.0- 8.5 and 7.6-6.8 kyr BP with the LIS contributing ~1.3 and 0.7 cm yr-1 to sea level rise, respectively. Simulations using a fully coupled atmosphere-ocean general circulation model suggest that increased ablation from enhanced early Holocene boreal summer insolation may have been the predominant cause of the LIS contributions to sea level rise. Although the boreal summer surface radiative forcing of early Holocene LIS retreat is twice that of projections for 2100 C.E. greenhouse gas radiative forcing, the associated summer surface air temperature increase is the same. The geologic evidence for rapid LIS retreat under a comparable forcing provides a prehistoric precedent for a possible large negative mass balance response of the Greenland Ice Sheet by the end of the coming century.
    Description: This research was funded by National Science Foundation grants ATM-05-01351 & ATM-05-01241 to D.W.O. & G.A.S., start-up funds from the University of Wisconsin-Madison and a Woods Hole Oceanographic Institution Postdoctoral Scholarship to A.E.C., and the Woods Hole Oceanographic Institution's Ocean and Climate Change Institute (D.W.O. & R.E.C.).
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Came, Rosemarie E; Oppo, Delia W; McManus, Jerry F (2007): Amplitude and timing of temperature and salinity variability in the subpolar North Atlantic over the past 10 k.y. Geology, 35(4), 315-318, https://doi.org/10.1130/G23455A.1
    Publication Date: 2024-03-02
    Description: Paired planktic foraminiferal d18O and Mg/Ca data reveal trends of increasing temperatures (~3 °C) and salinities in the subpolar North Atlantic over the course of the Holocene, which were punctuated by abrupt events. The trends likely reflect an insolation-forced northward retreat of the boundary between polar and North Atlantic subsurface waters. The superimposed variability does not appear to be periodic, but tends to recur within a broad millennial band. The records provide convincing evidence of open-ocean cooling (nearly 2°C) and freshening during the 8.2 ka event, and suggest similar conditions at 9.3 ka. However, the two largest temperature oscillations in our record (~2°C) occurred during the past 4 k.y., suggesting a recent increase in temperature variability relative to the mid-Holocene, perhaps in response to neoglaciation, which began at about this time.
    Keywords: 162-984C; Accelerator mass spectrometry (AMS); Age, dated; Age, dated standard deviation; Calculated; Calendar age; Depth, bottom/max; DEPTH, sediment/rock; Depth, top/min; DRILL; Drilling/drill rig; DSDP/ODP/IODP sample designation; Joides Resolution; Leg162; Ocean Drilling Program; ODP; Sample, optional label/labor no; Sample code/label; Sigma; South Atlantic Ocean; Species
    Type: Dataset
    Format: text/tab-separated-values, 231 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...