GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2010-2014  (269)
Publikationsart
Schlagwörter
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2019-09-23
    Materialart: Report , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-05-19
    Beschreibung: A new approach to predict biogenic particle fluxes to the seafloor is presented, which is based on diffusive oxygen uptake and, in particular, opal fluxes to the seafloor. For this purpose, we used a recently published empirical equation coupling benthic silica to oxygen fluxes, and showing a clear negative correlation between Si and O2 fluxes. Dissolution of biogenic silica mediated by aerobic microbial activity has been inferred at 24 sites along the African and South American continental margins. Based on the assumption that these findings hold essentially for the entire Southern Atlantic Ocean, we applied the silica to oxygen flux ratio to a basin-wide grid of diffusive oxygen uptake extracted from the literature. Assuming that the silica release across the sediment-water interface equals the particulate flux of biogenic opal to the seafloor, we estimated minimum opal rain rates. We combined these calculations with published relationships between aerobic organic carbon mineralization and dissolution rates of calcite above the hydrographical lysocline, thereby assessing the calcite rain rate and particulate organic carbon flux to the seafloor. The addition of the buried fraction completes our budget of biogenic particulate rain fluxes. The combination of such empirical equations provides a powerful and convenient tool which greatly facilitates future investigations of biogenic particle fluxes to the seafloor.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-09-23
    Beschreibung: We investigated gas hydrate in situ inventories as well as the composition and principal transport mechanisms of fluids expelled at the Amsterdam mud volcano (AMV; 2,025 m water depth) in the Eastern Mediterranean Sea. Pressure coring (the only technique preventing hydrates from decomposition during recovery) was used for the quantification of light hydrocarbons in near-surface deposits. The cores (up to 2.5 m in length) were retrieved with an autoclave piston corer, and served for analyses of gas quantities and compositions, and pore-water chemistry. For comparison, gravity cores from sites at the summit and beyond the AMV were analyzed. A prevalence of thermogenic light hydrocarbons was inferred from average C1/C2+ ratios 〈35 and δ13C-CH4 values of −50.6‰. Gas venting from the seafloor indicated methane oversaturation, and volumetric gas–sediment ratios of up to 17.0 in pressure cores taken from the center demonstrated hydrate presence at the time of sampling. Relative enrichments in ethane, propane, and iso-butane in gas released from pressure cores, and from an intact hydrate piece compared to venting gas suggest incipient crystallization of hydrate structure II (sII). Nonetheless, the co-existence of sI hydrate can not be excluded from our dataset. Hydrates fill up to 16.7% of pore volume within the sediment interval between the base of the sulfate zone and the maximum sampling depth at the summit. The concave-down shapes of pore-water concentration profiles recorded in the center indicate the influence of upward-directed advection of low-salinity fluids/fluidized mud. Furthermore, the SO42− and Ba2+ pore-water profiles in the central part of the AMV demonstrate that sulfate reduction driven by the anaerobic oxidation of methane is complete at depths between 30 cm and 70 cm below seafloor. Our results indicate that methane oversaturation, high hydrostatic pressure, and elevated pore-water activity caused by low salinity promote fixing of considerable proportions of light hydrocarbons in shallow hydrates even at the summit of the AMV, and possibly also of other MVs in the region. Depending on their crystallographic structure, however, hydrates will already decompose and release hydrocarbon masses if sediment temperatures exceed ca. 19.3°C and 21.0°C, respectively. Based on observations from other mud volcanoes, the common occurrence of such temperatures induced by heat flux from below into the immediate subsurface appears likely for the AMV.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2017-01-10
    Beschreibung: Sulfate reduction is a globally important yet poorly quantified redox process in marine sediments. We developed an artificial neural network trained with 199 sulfate profiles, constrained with geomorphological and geochemical maps to estimate global sulfate reduction rate distributions. Globally, 11.3 Tmol sulfate are reduced yearly, ~15% of previous estimates, accounting for the oxidation of 12-29% of the organic carbon flux to the sea floor. Combined with global cell distributions in marine sediments, these results indicate a strong contrast in sub–sea-floor prokaryote habitats: in continental margins global cell numbers in sulfate-depleted sediment exceed those in the overlying sulfate-bearing sediment by an order of magnitude, whereas in the abyss most life occurs in oxic and/or sulfate-reducing sediments.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2015-01-05
    Beschreibung: We have investigated the delivery of terrestrial organic carbon (OC) to the Amazon shelf and deep sea fan based on soil marker bacteriohopanepolyols (BHPs; adenosylhopane and related compounds) and branched glycerol dialkyl glycerol tetraethers (GDGTs), as well as on 14C dating of bulk organic matter. The microbial biomarker records show persistent burial of terrestrial OC, evidenced by almost constant and high BIT values (0.6) and soil marker BHP concentration [80–230 μg/g TOC (total OC)] on the late Holocene shelf and even higher BIT values (0.8–0.9), but lower and more variable soil-marker BHP concentration (40–100 μg/g TOC), on the past glacial deep sea fan. Radiocarbon data show that OC on the shelf is 3–4 kyr older than corresponding bivalve shells, emphasizing the presence of old carbon in this setting. We observe comparable and unexpectedly invariant BHP composition in both marine sediment records, with a remarkably high relative abundance of C-35 amino BHPs including compounds specific for aerobic methane oxidation on the shelf (avg. 50% of all BHPs) and the fan (avg. 40%). Notably, these marine BHP signatures are strikingly similar to those of a methane-producing floodplain area in one of the Amazonian wetland (várzea) regions. The observation indicates that BHPs in the marine sediments may have initially been produced within wetland regions of the Amazon basin and may therefore document persistent export from terrestrial wetland regions, with subsequent re-working in the marine environment, both during recent and past glacial climate conditions.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-17
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    MINERALOGICAL SOC
    In:  EPIC3Mineralogical Magazine - B: Goldschmidt Abstracts 2013, MINERALOGICAL SOC, 77(5), pp. 756-756, ISSN: 0026-461X
    Publikationsdatum: 2019-07-17
    Beschreibung: Sulfate is the dominant terminal electron acceptor in marine sediments. Sulfate reduction proceeds under anoxic conditions and is supported by a variety of electron donors (e.g. hydrogen, acetate, methane, propane, and butane), most of which are supplied by the decomposition of sedimentary organic matter. Consequently, a combination of primary productivity and water column depth is often thought to control sulfate reduction throughout most of the ocean’s seafloor [1, 2]. However, global models of sulfate reduction do not resolve the many different physical and ecological parameters that are encountered on a global scale, and that ultimately play a major role in driving local and regional sulfate reduction rates. We sought to better determine sulfate reduction rates on a global scale, irrespective of region or location by 1) including sulfate profiles from diverse settings and 2) compiling multiple geochemical parameters that are relevant to sulfate reduction and can help discern the magnitude of sulfate reduction rates. All available sulfate concentration profiles from DSDP/ODP/IODP (to Exp. 312) and additionally those in the database Pangaea (www.pangaea.de) were compiled reaching a total 〉600 nonrepetitive concentration profiles. Basic metadata describing the cores was included, such as water depth and distance to shore. Water column data such as minimum percent O2 saturation, bottom water O2, NO3 -, PO4 3-, and concentrations of surface water chlorophyll a and POC [3, 4] were included as additional variables that describe the biogeochemical setting of the cores. All compiled data and concentration profiles were applied to a training algorithm to estimate global sulfate reduction rates. The result was the most precise depiction of global sulfate reduction rates at the highest resolution to date. Our model serves as a platform for the examination of biogeochemical processes on the global scale and lets us predict energetic constraints for microbial metabolism in the subseafloor. [1] Canfield (1991) AJOS 291, 177-188. [2] Middelburg et al. (1997) DSR 44, 327-344. [3] Levitus & Boyer (1994) NOAA Atlas NESDIS [4] NASA, Aqua-MODIS
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , notRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q09004, doi:10.1029/2007GC001603.
    Beschreibung: Organic matter accumulation and burial on the Namibian shelf and upper slope are spatially heterogeneous and strongly controlled by lateral transport in subsurface nepheloid layers. Much of the material deposited in depo-centers on the slope ultimately derives from the shelf. Supply of organic matter from the shelf involves selective transport of organic matter. We studied these selective transport processes by analyzing the radiocarbon content of co-occurring sediment fractions. Here we present radiocarbon data for total organic carbon as well as three tracers of surface ocean productivity (phytoplankton-derived alkenones, membrane lipids of pelagic crenarchaeota (crenarchaeol), and calcareous microfossils of planktic foraminifera) in core-top and near-surface sediment samples. The samples were collected on the Namibian margin along a shelf-slope transect (85 to 1040 m) at 24°S and from the upper slope depo-center at 25.5°S. In core-top sediments, alkenone ages gradually increased from modern to 3490 radiocarbon years with distance from shore and with water depth. Crenarchaeol, while younger than alkenones, also increased in age with distance offshore. It was concluded that the observed ages were a consequence of cross-shelf transport and associated aging of organic matter. Radiocarbon ages of preserved lipid biomarkers in sediments thus at least partially depend on the relative amount of laterally supplied, pre-aged material present in a sample, highlighting the importance of nepheloid transport for the sedimentation of organic matter over the Namibian margin.
    Beschreibung: This work was funded by NSF grant OCE- 0327405 to T.I.E. and by a Spinoza grant to J.S.S.D. from NWO.
    Schlagwort(e): Compound-specific radiocarbon dating ; Sediment transport
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    facet.materialart.
    Unbekannt
    ELSEVIER SCIENCE BV
    In:  EPIC3Marine Geology, ELSEVIER SCIENCE BV, 319-32, pp. 35-46, ISSN: 0025-3227
    Publikationsdatum: 2019-07-17
    Beschreibung: The tight coupling between the atmospheric and oceanic circulation in the equatorial Atlantic region makes this area an important region for paleoclimatic research. Previous studies report the occurrence of large amounts of terrigenous material and soil organic carbon (SOC) within the marine sediments of the eastern Gulf of Guinea. We use the accumulation rates (AR) of branched glycerol dialkyl glycerol tetraethers (GDGTs) to identify variations in SOC delivery to the Niger Fan over the last 35 ka, and compare these records to long-chain n-alkanes as a proxy for higher plant material, to an inorganic proxy for terrigenous input (aluminum AR) and to indicators for the marine productivity (AR of carbonate and crenarchaeol). In addition, sea surface temperatures (SSTs) are calculated based on the TEX86H index and environmental factors affecting the SST-reconstructions are discussed. Our results indicate that Al AR are closely connected to the rate of mean sea level change after 15 ka BP, with an additional influence of the increased monsoonal precipitation and extended vegetation cover corresponding to the African Humid Period (14.8–5.5 ka BP). Branched GDGT AR appears to be determined by shelf erosion in addition to the interplay of monsoonal precipitation and vegetation cover controlling soil erosion. Long-chain n-alkane concentrations clearly show a different trend than the other proxies, which might be due to their predominant eolian transport. Paleo-SSTs show a clear shift from colder temperatures during the last glacial period (20–22 °C) to warmer temperatures during the Holocene (24–26 °C). However, TEX86H -based SSTs are cold-biased compared to recent SSTs and Mg/Ca-based SST reconstructions, which is probably caused by a high seasonality of the Thaumarchaeota, with a maximum productivity of these organisms during the cold summer months. However, a sub-surface production of GDGTs and/or a potential bias of SST reconstruction by terrestrial input could not be completely excluded.
    Repository-Name: EPIC Alfred Wegener Institut
    Materialart: Article , isiRev
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Collins, James A; Govin, Aline; Mulitza, Stefan; Heslop, David; Zabel, Matthias; Hartmann, Jens; Röhl, Ursula; Wefer, Gerold (2013): Abrupt shifts of the Sahara–Sahel boundary during Heinrich stadials. Climate of the Past, 9(3), 1181-1191, https://doi.org/10.5194/cp-9-1181-2013
    Publikationsdatum: 2023-06-15
    Beschreibung: Relict dune fields that are found as far south as 14° N in the modern-day African Sahel are testament to equatorward expansions of the Sahara desert during the Late Pleistocene. However, the discontinuous nature of dune records means that abrupt millennial-timescale climate events are not always resolved. High-resolution marine core studies have identified Heinrich stadials as the dustiest periods of the last glacial in West Africa although the spatial evolution of dust export on millennial timescales has so far not been investigated. We use the major-element composition of four high-resolution marine sediment cores to reconstruct the spatial extent of Saharan-dust versus river-sediment input to the continental margin from West Africa over the last 60 ka. This allows us to map the position of the sediment composition corresponding to the Sahara-Sahel boundary. Our records indicate that the Sahara-Sahel boundary reached its most southerly position (13° N) during Heinrich stadials and hence suggest that these were the periods when the sand dunes formed at 14° N on the continent. Heinrich stadials are associated with cold North Atlantic sea surface temperatures which appear to have triggered abrupt increases of aridity and wind strength in the Sahel. Our study illustrates the influence of the Atlantic meridional overturning circulation on the position of the Sahara-Sahel boundary and on global atmospheric dust loading.
    Schlagwort(e): Center for Marine Environmental Sciences; MARUM
    Materialart: Dataset
    Format: application/zip, 8 datasets
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...