GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C12009, doi:10.1029/2011JC007286.
    Description: Interannual-to-decadal time scale eddy variability in the Hawaiian Lee Countercurrent (HLCC) band is investigated using the available sea surface height, sea surface temperature, and surface wind stress data sets. In the HLCC band of 17°N–21.7°N and 170E°–160°W, the prevailing interannual eddy kinetic energy (EKE) signals show enhanced eddy activities in 1993–1998 and 2002–2006, and subpar eddy activities in 1999–2001 and 2007–2009. These interannual EKE signals exhibit little connection to the zonal HLCC velocity changes generated by the dipolar wind stress curl forcing in the immediate lee of the island of Hawaii. Instead, they are highly correlated to the time series of the Pacific Decadal Oscillation (PDO) index. Through a budget analysis for the meridional temperature gradient along the HLCC, we find that during the positive phase of the PDO index, the surface heat flux forcing induces cold (warm) sea surface temperature (SST) anomalies to the north (south) of the HLCC, intensifying the vertical shear between the surface, eastward-flowing HLCC and the subsurface, westward-flowing North Equatorial Current (NEC). This increased vertical shear enhances the baroclinic instability of the HLCC-NEC system and leads to a higher regional EKE level. The opposite processes occur when the PDO switches to a negative phase with the resulting lowered EKE level along the HLCC band. Compared to the surface heat flux forcing, the Ekman flux convergence forcing is found to play a minor role in modifying the meridional SST changes along the HLCC band.
    Description: We acknowledge support from NOAA through grant NA17RJ1230 for S.Y. and P.H. and NASA’s Ocean Surface topography Mission through JPL contract 1207881 for B.Q.
    Description: 2012-06-08
    Keywords: Hawaiian Lee Countercurrent ; PDO ; Decadal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 85 (2013): 62-74, doi:10.1016/j.dsr2.2012.07.018.
    Description: Data from the Kuroshio Extension Observatory (KEO) surface mooring are used to analyze the balance of processes affecting the upper ocean heat content and surface mixed layer temperature variations in the Recirculation Gyre (RG) south of the Kuroshio Extension (KE). Cold and dry air blowing across the KE and its warm RG during winter cause very large heat fluxes out of the ocean that result in the erosion of the seasonal thermocline in the RG. Some of this heat is replenished through horizontal heat advection, which may enable the seasonal thermocline to begin restratifying while the net surface heat flux is still acting to cool the upper ocean. Once the surface heat flux begins warming the ocean, restratification occurs rapidly due to the low thermal inertia of the shallow mixed layer depth. Enhanced diffusive mixing below the mixed layer tends to transfer some of the mixed layer heat downward, eroding and potentially modifying sequestered subtropical mode water and even the deeper waters of the main thermocline during winter. Diffusivity at the base of the mixed layer, estimated from the residual of the mixed layer temperature balance, is roughly 3×10−4 m2/s during the summer and up to two orders of magnitude larger during winter. The enhanced diffusivities appear to be due to large inertial shear generated by wind events associated with winter storms and summer tropical cyclones. The diffusivity's seasonality is likely due to seasonal variations in stratification just below the mixed layer depth, which is large during the summer when the seasonal thermocline is fully developed and low during the winter when the mixed layer extends to the top of the thermocline.
    Description: N. Bond and L. Rainville were supported by NSF Grant OCE-0827125. T. Farrar and S. Jayne were supported by NSF Grant OCE-0825152. B. Qiu was supported by NSF Grant OCN-0220680.
    Keywords: Air–sea interaction ; Heat budget ; Kuroshio Extension ; Mixing processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 36 (2006): 457-473, doi:10.1175/JPO2849.1.
    Description: Properties and seasonal evolution of North Pacific Ocean subtropical mode water (STMW) within and south of the Kuroshio Extension recirculation gyre are analyzed from profiling float data and additional hydrographic and shipboard ADCP measurements taken during 2004. The presence of an enhanced recirculation gyre and relatively low mesoscale eddy variability rendered this year favorable for the formation of STMW. Within the recirculation gyre, STMW formed from late-winter convection that reached depths greater than 450 m near the center of the gyre. The lower boundary of STMW, corresponding to σθ 25.5 kg m−3, was set by the maximum depth of the late-winter mixed layer. Properties within the deep portions of the STMW layer remained largely unchanged as the season progressed. In contrast, the upper boundary of the STMW layer eroded steadily as the seasonal thermocline deepened from late April to August. Vertical eddy diffusivity responsible for this erosion was estimated from a budget analysis of potential vorticity to be in the range of 2–5 × 10−4 m2 s−1. The latitudinal extent of the STMW formation was narrow, extending from 30°N to the Kuroshio Extension jet near 35°N. South of 30°N, STMW did not form locally but was transported from the recirculation gyre by lateral induction.
    Description: This study was supported by NSF as part of a Collaborative Research Project (OCE- 0220680 to UH, OCE-0221008 to URI, and OCE- 0220161 to WHOI).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1764-1779, doi:10.1175/2008JPO3921.1.
    Description: Middepth, time-mean circulation in the western North Pacific Ocean (28°–45°N, 140°–165°E) is investigated using drift information from the profiling floats deployed in the Kuroshio Extension System Study (KESS) and the International Argo programs. A well-defined, cyclonic recirculation gyre (RG) is found to exist north of the Kuroshio Extension jet, confined zonally between the Japan Trench (145°E) and the Shatsky Rise (156°E), and bordered to the north by the subarctic boundary along 40°N. This northern RG, which is simulated favorably in the eddy-resolving OGCM for the Earth Simulator (OFES) hindcast run model, has a maximum volume transport at 26.4 Sv across 159°E and its presence persists on the interannual and longer time scales. An examination of the time-mean x-momentum balance from the OFES hindcast run output reveals that horizontal convergence of Reynolds stresses works to accelerate both the eastward-flowing Kuroshio Extension jet and a westward mean flow north of the meandering jet. The fact that the northern RG is eddy driven is further confirmed by examining the turbulent Sverdrup balance, in which convergent eddy potential vorticity fluxes are found to induce the cyclonic RG across the background potential vorticity gradient field. For the strength of the simulated northern RG, the authors find the eddy dissipation effect to be important as well.
    Description: This study was supported by NSF through Grant OCE-0220680 (UH) and OCE-0220161 (WHOI).
    Keywords: Gyres ; Ocean circulation ; Profilers ; Jets ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 23 (2010): 3249-3281, doi:10.1175/2010JCLI3343.1.
    Description: Ocean–atmosphere interaction over the Northern Hemisphere western boundary current (WBC) regions (i.e., the Gulf Stream, Kuroshio, Oyashio, and their extensions) is reviewed with an emphasis on their role in basin-scale climate variability. SST anomalies exhibit considerable variance on interannual to decadal time scales in these regions. Low-frequency SST variability is primarily driven by basin-scale wind stress curl variability via the oceanic Rossby wave adjustment of the gyre-scale circulation that modulates the latitude and strength of the WBC-related oceanic fronts. Rectification of the variability by mesoscale eddies, reemergence of the anomalies from the preceding winter, and tropical remote forcing also play important roles in driving and maintaining the low-frequency variability in these regions. In the Gulf Stream region, interaction with the deep western boundary current also likely influences the low-frequency variability. Surface heat fluxes damp the low-frequency SST anomalies over the WBC regions; thus, heat fluxes originate with heat anomalies in the ocean and have the potential to drive the overlying atmospheric circulation. While recent observational studies demonstrate a local atmospheric boundary layer response to WBC changes, the latter’s influence on the large-scale atmospheric circulation is still unclear. Nevertheless, heat and moisture fluxes from the WBCs into the atmosphere influence the mean state of the atmospheric circulation, including anchoring the latitude of the storm tracks to the WBCs. Furthermore, many climate models suggest that the large-scale atmospheric response to SST anomalies driven by ocean dynamics in WBC regions can be important in generating decadal climate variability. As a step toward bridging climate model results and observations, the degree of realism of the WBC in current climate model simulations is assessed. Finally, outstanding issues concerning ocean–atmosphere interaction in WBC regions and its impact on climate variability are discussed.
    Description: Funding for LT was provided by the NASA-sponsored Ocean Surface Topography Science Team, under Contract 1267196 with the University of Washington, administered by the Jet Propulsion Laboratory. HN was supported in part by the Grant-in-Aid 18204044 by the Japan Society for Promotion for Science (JSPS) and the Global Environment Research Fund (S-5) of the Japanese Ministry of Environment. YK was supported by the Kerr Endowed Fund and Penzance Endowed Fund.
    Keywords: Currents ; Sea surface temperature ; Anomalies ; Large-scale motions ; Oceanic mixed layer ; Northern Hemisphere
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Climate Change 2 (2012): 161-166, doi:10.1038/nclimate1353.
    Description: Subtropical western boundary currents are warm, fast flowing currents that form on the western side of ocean basins. They carry warm tropical water to the mid-latitudes and vent large amounts of heat and moisture to the atmosphere along their paths, affecting atmospheric jet streams and mid-latitude storms, as well as ocean carbon uptake. The possibility that these highly energetic and nonlinear currents might change under greenhouse gas forcing has raised significant concerns, but detecting such changes is challenging owing to limited observations. Here, using reconstructed sea surface temperature datasets and newly developed century-long ocean and atmosphere reanalysis products, we find that the post-1900 surface ocean warming rate over the path of these currents is two to three times faster than the global mean surface ocean warming rate. The accelerated warming is associated with a synchronous poleward shift and/or intensification of global subtropical western boundary currents in conjunction with a systematic change in winds over both hemispheres. This enhanced warming may reduce ocean's ability to absorb anthropogenic carbon dioxide over these regions. However, uncertainties in detection and attribution of these warming trends remain, pointing to a need for a long-term monitoring network of the global western boundary currents and their extensions.
    Description: This work is supported by China National Key Basic Research Project (2007CB411800) and National Natural Science Foundation Projects (40788002, 40921004). WC is supported by the Australian Climate Change Science program and the Southeast Australia Climate Initiative. HN is supported in part by the Japanese Ministry of Education, Culture, Sports, Science and Technology through Grant-in-Aid for Scientific Research on Innovative Areas #2205 and by the Japanese Ministry of Environment through Global Environment Research Fund (S-5). MJM is supported by NOAA’s Climate Program Office.
    Description: 2012-07-29
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Subtropical western boundary currents are warm, fast-flowing currents that form on the western side of ocean basins. They carry warm tropical water to the mid-latitudes and vent large amounts of heat and moisture to the atmosphere along their paths, affecting atmospheric jet streams and mid-latitude storms, as well as ocean carbon uptake1, 2, 3, 4. The possibility that these highly energetic currents might change under greenhouse-gas forcing has raised significant concerns5, 6, 7, but detecting such changes is challenging owing to limited observations. Here, using reconstructed sea surface temperature datasets and century-long ocean and atmosphere reanalysis products, we find that the post-1900 surface ocean warming rate over the path of these currents is two to three times faster than the global mean surface ocean warming rate. The accelerated warming is associated with a synchronous poleward shift and/or intensification of global subtropical western boundary currents in conjunction with a systematic change in winds over both hemispheres. This enhanced warming may reduce the ability of the oceans to absorb anthropogenic carbon dioxide over these regions. However, uncertainties in detection and attribution of these warming trends remain, pointing to a need for a long-term monitoring network of the global western boundary currents and their extensions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-07-11
    Description: The Journal of Organic Chemistry DOI: 10.1021/jo501125b
    Print ISSN: 0022-3263
    Electronic ISSN: 1520-6904
    Topics: Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-02-04
    Description: Author(s): Fabio Dominguez, Jian-Wei Qiu, Bo-Wen Xiao, and Feng Yuan We show that the linearly polarized gluon distributions appear in the color dipole model as we derive the full cross sections of the DIS dijet production and the Drell-Yan dijet ( γ * jet correlation) process. Together with the normal Weizsäcker-Williams gluon distribution, the linearly polarized one ... [Phys. Rev. D 85, 045003] Published Fri Feb 03, 2012
    Keywords: Field theory, formal particle theory
    Print ISSN: 0556-2821
    Electronic ISSN: 1089-4918
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-01-11
    Description: Author(s): Wei-Bin Yan, Qiu-Bo Fan, and Ling Zhou [Phys. Rev. A 85, 015803] Published Tue Jan 10, 2012
    Keywords: Quantum optics, physics of lasers, nonlinear optics, classical optics
    Print ISSN: 1050-2947
    Electronic ISSN: 1094-1622
    Topics: Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...