GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of oceanography 50 (1994), S. 17-30 
    ISSN: 1573-868X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The sea surface emissivity in the infrared region is determined on the basis of data analyses. Net radiation, surface irradiance and other oceanographical and meteorological variables are measured throughout most of the year at the oceanographical observatory tower in Tanabe Bay, Japan. We have found that 0.984±0.004 is a reliable emissivity value from the night time data. Surface emission radiates not from the subsurface water but from the sea surface. The thermal skin layer on the sea surface, however, is disturbed and disappears under high wind speed over 5 m/s through the analyses of the radiation observation using the emissivity value of 0.984. Under low wind speed, the sea surface can be cooler or warmer than the subsurface due to overlying thermal conditions and the skin layer can be neutral as the transient process between them. By using an emissivity value of 0.984, the temperature difference between the sea surface temperature and the temperature determined from surface irradiance that has been reported in the satellite data analyses is found to be reduced by half.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-868X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract We investigated the phase difference and the cross correlation coefficient between the band-pass filtered biennial variations of sea surface temperature (SST) and air-sea heat flux estimated by the monthly mean 2°×2° satellite data of Advanced Very High Resolution Radiometer (AVHRR) and Special Sensor Microwave/Imager (SSM/I) from July 1987 to June 1991. Judging from the phase difference, it can be determined whether the biennial variation of SST is controlled by local thermal air-sea interaction or oceanic processes of horizontal transport. When the local air-sea heat flux controls the biennial variation of SST, the phase of SST advances π/2 (∼6 months) against that of the air-sea heat flux. In contrast, when the biennial variation of SST is controlled by the oceanic process, the phase difference between the SST and the air-sea heat flux becomes 0 or π(∼12 months). In this case, two types of the phase differences are determined, depending on which variability of SST and air-sea heat flux is larger. The close thermal air-sea interaction is noticeable in the tropics and in the western boundary current region. The phase difference of π/2 appears mainly in the north Pacific, the southeast Indian Ocean, and the western tropical Pacific; zero in the eastern tropical Pacific and the northeast and equatorial Atlantic; and that of π in the central equatorial Pacific and north of the intertropical convergence zone (ITCZ) of the Atlantic. Phase differences of 0, π, or π/2 are possible in the western boundary current regions. This fact indicates that each current plays a different role to the biennial variation of SST. It is inferred that SST anomalies in the tropics are mutually correlated, and the process in which marked SST anomalies in the tropics are transferred to the remote area was probed. In the equatorial Pacific, the SST anomaly is transferred by the long planetary wave. On the other hand, it is found from the phase relationship and the horizontal correlation of SST that the SST anomaly in the central and western equatorial Pacific is connected through atmospheric mediation. It is suggested that the biennial variation of SST in the eastern Indian Ocean is affected by heat transport due to the Indonesian throughflow from the western tropical Pacific. It is found that the mentioned pattern of the interannual variation of SST in the tropical Atlantic as a dipole is not tenable.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-868X
    Keywords: NSCAT ; scatterometer ; surface wind vectors ; remote sensing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract In order to validate wind vectors derived from the NASA Scatterometer (NSCAT), two NSCAT wind products of different spatial resolutions are compared with observations by buoys and research vessels in the seas around Japan. In general, the NSCAT winds agree well with the wind data from the buoys and vessels. It is shown that the root-mean-square (rms) difference between NSCAT-derived wind speeds and the buoy observations is 1.7 ms−1, which satisfies the mission requirement of accuracy, 2 ms−1. However, the rms difference of wind directions is slightly larger than the mission requirement, 20°. This result does not agree with those of previous studies on validation of the NSCAT-derived wind vectors using buoy observations, and is considered to be due to differences in the buoy observation systems. It is also shown that there are no significant systematic trends of the NSCAT wind speed and direction depending on the wind speed and incidence angle. Comparison with ship winds shows that the NSCAT wind speeds are lower than those observed by the research vessels by about 0.7 ms−1 and this bias is twice as large for data observed by moving ships than by stationary ships. This result suggests that the ship winds may be influenced by errors caused by ship's motion, such as pitching and rolling.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 85 (2013): 62-74, doi:10.1016/j.dsr2.2012.07.018.
    Description: Data from the Kuroshio Extension Observatory (KEO) surface mooring are used to analyze the balance of processes affecting the upper ocean heat content and surface mixed layer temperature variations in the Recirculation Gyre (RG) south of the Kuroshio Extension (KE). Cold and dry air blowing across the KE and its warm RG during winter cause very large heat fluxes out of the ocean that result in the erosion of the seasonal thermocline in the RG. Some of this heat is replenished through horizontal heat advection, which may enable the seasonal thermocline to begin restratifying while the net surface heat flux is still acting to cool the upper ocean. Once the surface heat flux begins warming the ocean, restratification occurs rapidly due to the low thermal inertia of the shallow mixed layer depth. Enhanced diffusive mixing below the mixed layer tends to transfer some of the mixed layer heat downward, eroding and potentially modifying sequestered subtropical mode water and even the deeper waters of the main thermocline during winter. Diffusivity at the base of the mixed layer, estimated from the residual of the mixed layer temperature balance, is roughly 3×10−4 m2/s during the summer and up to two orders of magnitude larger during winter. The enhanced diffusivities appear to be due to large inertial shear generated by wind events associated with winter storms and summer tropical cyclones. The diffusivity's seasonality is likely due to seasonal variations in stratification just below the mixed layer depth, which is large during the summer when the seasonal thermocline is fully developed and low during the winter when the mixed layer extends to the top of the thermocline.
    Description: N. Bond and L. Rainville were supported by NSF Grant OCE-0827125. T. Farrar and S. Jayne were supported by NSF Grant OCE-0825152. B. Qiu was supported by NSF Grant OCN-0220680.
    Keywords: Air–sea interaction ; Heat budget ; Kuroshio Extension ; Mixing processes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 132 (2016): 263–264, doi:10.1016/j.dsr2.2016.08.001.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...