GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q08013, doi:10.1029/2007GC001652.
    Description: We report first evidence for hydrothermal activity from the southern Knipovich Ridge, an ultra-slow spreading ridge segment in the Norwegian-Greenland Sea. Evidence comes from optical backscatter anomalies collected during a systematic side-scan sonar survey of the ridge axis, augmented by the identification of biogeochemical tracers in the overlying water column that are diagnostic of hydrothermal plume discharge (Mn, CH4, ATP). Analysis of coregistered geologic and oceanographic data reveals that the signals we have identified are consistent with a single high-temperature hydrothermal source, located distant from any of the axial volcanic centers that define second-order segmentation along this oblique ridge system. Rather, our data indicate a hydrothermal source associated with highly tectonized seafloor that may be indicative of serpentinizing ultramafic outcrops. Consistent with this hypothesis, the hydrothermal plume signals we have detected exhibit a high methane to manganese ratio of 2–3:1. This is higher than that typical of volcanically hosted vent sites and provides further evidence that the source of the plume signals reported here is most probably a high-temperature hydrothermal field that experiences some ultramafic influence (compare to Rainbow and Logachev sites, Mid-Atlantic Ridge). While such sites have previously been invoked to be common on the SW Indian Ridge, this may be the first such site to be located along the Arctic ultra-slow spreading ridge system.
    Description: Connelly and German were funded by NERC grant NER/B/S/ 2000/00755, NERC Core Strategic Funding at NOC, and the ChEss project of the Census of Marine Life.
    Keywords: Hydrothermal ; Arctic ; Serpentinization ; Knipovich Ridge
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © Macmillan Publishers Limited, 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 3 (2012): 620, doi:10.1038/ncomms1636.
    Description: The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre. The Von Damm Vent Field is located on the upper slopes of an oceanic core complex at a depth of 2,300 m. High-temperature venting in this off-axis setting suggests that the global incidence of vent fields may be underestimated. At a depth of 4,960 m on the Mid-Cayman spreading centre axis, the Beebe Vent Field emits copper-enriched fluids and a buoyant plume that rises 1,100 m, consistent with 〉 400 °C venting from the world’s deepest known hydrothermal system. At both sites, a new morphospecies of alvinocaridid shrimp dominates faunal assemblages, which exhibit similarities to those of Mid-Atlantic vents.
    Description: This work is supported by a UK NERC award (NE/F017774/1 & NE/F017758/1) to J.T.C., D.P.C., B.J.M., K.S. and P.A.T., Royal Society Travel Grant 2009/R3 to R.C.S., A.M. is supported by SENSEnet, a Marie Curie Initial Training Network (ITN) funded by the European Commission Seventh Framework Programme, Contract Number PITN-GA-2009-237868 and a NASA ASTEP Grant NNX09AB75G to C.R.G. and C.L.V.D., which are gratefully acknowledged.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS Biology 10 (2012): e1001234, doi:10.1371/journal.pbio.1001234.
    Description: Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more complex than previously recognised.
    Description: The ChEsSo research programme was funded by a NERC Consortium Grant (NE/DO1249X/1) and supported by the Census of Marine Life and the Sloan Foundation, and the Total Foundation for Biodiversity (Abyss 2100)(SVTH) all of which are gratefully acknowledged. We also acknowledge NSF grant ANT-0739675 (CG and TS), NERC PhD studentships NE/D01429X/1(LH, LM, CNR), NE/H524922/1(JH) and NE/F010664/1 (WDKR), a Cusanuswerk doctoral fellowship, and a Lesley & Charles Hilton-Brown Scholarship, University of St. Andrews (PHBS).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geochimica et Cosmochimica Acta 139 (2014): 47-71, doi:10.1016/j.gca.2014.04.024.
    Description: The East Scotia Ridge is an active back-arc spreading centre located to the west of the South Sandwich island arc in the Southern Ocean. Initial exploration of the ridge by deep-tow surveys provided the first evidence for hydrothermal activity in a back-arc setting outside of the western Pacific, and we returned in 2010 with a remotely operated vehicle to precisely locate and sample hydrothermal sites along ridge segments E2 and E9. Here we report the chemical and isotopic composition of high- and low-temperature vent fluids, and the mineralogy of associated high-temperature chimney material, for two sites at E2 (Dog’s Head and Sepia), and four sites at E9 (Black & White, Ivory Tower, Pagoda and Launch Pad). The chemistry of the fluids is highly variable between the ridge segments. Fluid temperatures were ∼350 °C at all vent sites except Black & White, which was significantly hotter (383 °C). End-member chloride concentrations in E2 fluids (532–536 mM) were close to background seawater (540 mM), whereas Cl in E9 fluids was much lower (98–220 mM) indicating that these fluids are affected by phase separation. Concentrations of the alkali elements (Na, Li, K and Cs) and the alkaline earth elements (Ca, Sr and Ba) co-vary with Cl, due to charge balance constraints. Similarly, concentrations of Mn and Zn are highest in the high Cl fluids but, by contrast, Fe/Cl ratios are higher in E9 fluids (3.8–8.1 × 10−3) than they are in E2 fluids (1.5–2.4 × 10−3) and fluids with lowest Cl have highest Cu. Although both ridge segments are magmatically inflated, there is no compelling evidence for input of magmatic gases to the vent fluids. Fluid δD values range from 0.2‰ to 1.5‰, pH values (3.02–3.42) are not especially low, and F concentrations (34.6–54.4 μM) are lower than bottom seawater (62.8 μM). The uppermost sections of conjugate chimney material from E2, and from Ivory Tower and Pagoda at E9, typically exhibit inner zones of massive chalcopyrite enclosed within an outer zone of disseminated sulphide, principally sphalerite and pyrite, in an anhydrite matrix. By contrast, the innermost part of the chimneys that currently vent fluids with lowest Cl (Black & White and Launch Pad), is dominated by anhydrite. By defining and assessing the controls on the chemical composition of these vent fluids, and associated mineralisation, this study provides new information for evaluating the significance of hydrothermal processes at back-arc basins for ocean chemistry and the formation of seafloor mineral deposits.
    Description: This work was funded by the Natural Environment Research Council consortium grant NE/D01249X/1. C.R.G. acknowledges further support from the National Science Foundation’s Office of Polar Programs grant ANT-0739675. N.R.B. acknowledges funding from the National Sciences and Engineering Research Council of Canada, Ontario Ministry of Research and Innovation, and the Academic Development Fund at Western University.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-01-06
    Description: We report a high performance autonomous analytical system based on the vanadomolybdate method for the determination of soluble reactive phosphorus in seawater. The system combines a microfluidic chip manufactured from tinted poly (methyl methaaylate) (PMMA), a custom made syringe pump, embedded control electronics and on-board calibration standards. This "lab-on-a-chip" analytical system was successfully deployed and cross-compared with reference analytical methods in coastal (south west England) and open ocean waters (tropical North Atlantic). The results of the miniaturized system compared well with a reference bench-operated phosphate auto-analyser and showed no significant differences in the analytical results (student's t-test at 95% confidence level). The optical technology used, comprising of tinted PMMA and polished fluidic channels, has allowed an improvement of two orders of magnitude of the limit of detection (52 nM) compared to currently available portable systems based on this method. The system has a wide linear dynamic range 0.1-60 mu M, and a good precision (13.6% at 0.4 mu M, n=4). The analytical results were corrected for silicate interferences at 0.7 mu M, and the measurement frequency was configurable with a sampling throughput of up to 20 samples per hour. This portable micro-analytical system has a low reagent requirement (340 mu L per sample) and power consumption (756J per sample), and has allowed accurate high resolution measurements of soluble reactive phosphorus in seawater
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-05-04
    Description: The uptake of anthropogenic CO2 by the oceans since the onset of the industrial revolution is considered a serious challenge to marine ecosystems due to ensuing carbonate-chemistry changes (ocean acidification). Furthermore, the CO2 uptake is reducing the ocean's capacity to absorb future CO2 emissions. In order to follow the changes in the ocean's carbonate system, high-quality analytical measurements with good spatial and temporal resolution are necessary. High-precision and accurate pH measurements are now possible, and allow us to determine the progression of ocean acidification. The spectrophotometric pH technique is now widely used and capable of the required high-quality measurements. Spectrophotometric pH systems are deployed on ships and in situ on remote platforms. Smaller and more rugged instruments are nevertheless required for more widespread in situ application to allow routine high-resolution measurements, even in the most remote regions. We critically review oceanic pH measurements, and focus on state-of-the-art spectrophotometric pH measurement techniques and instrumentation. We present a simple microfluidic design integrated in a shipboard instrument featuring high accuracy and precision as a key step towards a targeted pH microsensor system
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-12-07
    Description: Hydrocarbon-rich fluids expelled at mud volcanoes (MVs) may contribute significantly to the carbon budget of the oceans, but little is known about the long-term variation in fluid fluxes at MVs. The Darwin MV is one of more than 40 MVs located in the Gulf of Cadiz, but it is unique in that its summit is covered by a thick carbonate crust that has the potential to provide a temporal record of seepage activity. In order to test this idea, we have conducted petrographic, chemical and isotopic analyses of the carbonate crust. In addition a 1-D transport-reaction model was applied to pore fluid data to assess fluid flow and carbonate precipitation at present. The carbonate crusts mainly comprise of aragonite, with a chaotic fabric exhibiting different generations of cementation and brecciation. The crusts consist of bioclasts and lithoclasts (peloids, intraclasts and extraclasts) immersed in a micrite matrix and in a variety of cement types (microsparite, botryoidal, isopachous acicular, radial and splayed fibrous). The carbonates are moderately depleted in 13C (δ13C = − 8.1 to − 27.9‰) as are the pore fluids (δ13C = − 19.1 to − 28.7‰), which suggests that their carbon originated from the oxidation of methane and higher hydrocarbons, like the gases that seep from the MV today. The carbonate δ18O values are as high as 5.1‰, and it is most likely that the crusts formed from 18O-rich fluids derived from dehydration of clay minerals at depth. Pore fluid modelling results indicate that the Darwin MV is currently in a nearly dormant phase (seepage velocities are 〈 0.09 cm yr− 1). Thus, the thick carbonate crust must have formed during past episodes of high fluid flow, alternating with phases of mud extrusion and uplift. Highlights ► Results of pore fluid modelling indicate low seepage activity at localised sites. ► Pore fluids are supersaturated with respect to hydrocarbons of thermogenic origin. ► AOM supports vent fauna and results in the formation of authigenic carbonates. ► The carbonate crust has a brecciated appearance and mainly consists of aragonite. ► The crust formation seems to be regulated by changes in fluid and mudflow activity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU (American Geophysical Union) | Wiley
    In:  Geophysical Research Letters, 41 (3). pp. 942-947.
    Publication Date: 2021-04-23
    Description: Hydrothermal venting often occurs at submarine volcanic calderas on island arc chains, typically at shallower depths than mid–ocean ridges. The effect of these systems on ocean biogeochemistry has been under-investigated to date. Here we show that hydrothermal effluent from an island arc caldera was rich in Fe(III) colloids (0.02–0.2 µm; 46% of total Fe), contributing to a fraction of hydrothermal Fe that was stable in ocean water. Iron(III) colloids from island arc calderas may be transferred into surrounding waters (generally 0–1500 m depth) by ocean currents, thereby potentially stimulating surface ocean primary productivity. Hydrothermal Fe oxyhydroxide particles (〉0.2 µm) were also pervasive in the studied caldera and contained high concentrations of oxyanions of phosphorus (P), vanadium (V), arsenic (As), and manganese (Mn). Hydrothermal island arcs may be responsible for 〉 50% of global hydrothermal P scavenging and 〉 40% V scavenging, despite representing 〈10% of global hydrothermal fluid flow.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-06-19
    Description: The East Scotia subduction zone, located in the Atlantic sector of the Southern Ocean, hosts a number of hydrothermal sites in both back-arc and island-arc settings. High temperature (〉348 °C) ‘black smoker’ vents have been sampled at three locations along segments E2 and E9 of the East Scotia back-arc spreading ridge, as well as ‘white smoker’ (〈212 °C) and diffuse (〈28 °C) hydrothermal fluids from within the caldera of the Kemp submarine volcano. The composition of the endmember fluids (Mg = 0 mmol/kg) is markedly different, with pH ranging from 〈1 to 3.4, [Cl−] from ∼90 to 536 mM, [H2S] from 6.7 to ∼200 mM and [F−] from 35 to ∼1000 μM. All of the vent sites are basalt- to basaltic andesite-hosted, providing an ideal opportunity for investigating the geochemical controls on rare earth element (REE) behaviour. Endmember hydrothermal fluids from E2 and E9 have total REE concentrations ranging from 7.3 to 123 nmol/kg, and chondrite-normalised distribution patterns are either light REE-enriched (LaCN/YbCN = 12.8–30.0) with a positive europium anomaly (EuCN/Eu∗CN = 3.45–59.5), or mid REE-enriched (LaCN/NdCN = 0.61) with a negative Eu anomaly (EuCN/Eu∗CN = 0.59). By contrast, fluids from the Kemp Caldera have almost flat REE patterns (LaCN/YbCN = 2.1–2.2; EuCN/Eu∗CN = 1.2–2.2). We demonstrate that the REE geochemistry of fluids from the East Scotia back-arc spreading ridge is variably influenced by ion exchange with host minerals, phase separation, competitive complexation with ligands, and anhydrite deposition, whereas fluids from the Kemp submarine volcano are also affected by the injection of magmatic volatiles which enhances the solubility of all the REEs. We also show that the REE patterns of anhydrite deposits from Kemp differ from those of the present-day fluids, potentially providing critical information about the nature of hydrothermal activity in the past, where access to hydrothermal fluids is precluded.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-09-27
    Description: Submarine mud volcanism is an important pathway for transfer of deep-sourced fluids enriched in hydrocarbons and other elements into the ocean. Numerous mud volcanoes (MVs) have been discovered along oceanic plate margins, and integrated elemental fluxes are potentially significant for oceanic chemical budgets. Here, we present the first detailed study of the spatial variation in fluid and chemical fluxes at the Carlos Ribeiro MV in the Gulf of Cadiz. To this end, we combine analyses of the chemical composition of pore fluids with a 1-D transport-reaction model to quantify fluid fluxes, and fluxes of boron, lithium and methane, across the sediment–seawater interface. The pore fluids are significantly depleted in chloride, but enriched in lithium, boron and hydrocarbons, relative to seawater. Pore water profiles of sulphate, hydrogen sulphide and total alkalinity indicate that anaerobic oxidation of methane occurs at 34–180 cm depth below seafloor. Clay mineral dehydration, and in particular the transformation of smectite to illite, produces pore fluids that are depleted in chloride and potassium. Profiles of boron, lithium and potassium are closely related, which suggests that lithium and boron are released from the sediments during this transformation. Pore fluids are expelled into the water column by advection; fluid flow velocities are 4 cm yr−1 at the apex of the MV but they rapidly decrease to 0.4 cm yr−1 at the periphery. The associated fluxes of boron, lithium and methane vary between 7–301, 0.5–6 and 0–806 mmol m−2 yr−1, respectively. We demonstrate that fluxes of Li and B due to mud volcanism may be important on a global scale, however, release of methane into the overlying water column is suppressed by microbial methanotrophy.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...