GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q08013, doi:10.1029/2007GC001652.
    Description: We report first evidence for hydrothermal activity from the southern Knipovich Ridge, an ultra-slow spreading ridge segment in the Norwegian-Greenland Sea. Evidence comes from optical backscatter anomalies collected during a systematic side-scan sonar survey of the ridge axis, augmented by the identification of biogeochemical tracers in the overlying water column that are diagnostic of hydrothermal plume discharge (Mn, CH4, ATP). Analysis of coregistered geologic and oceanographic data reveals that the signals we have identified are consistent with a single high-temperature hydrothermal source, located distant from any of the axial volcanic centers that define second-order segmentation along this oblique ridge system. Rather, our data indicate a hydrothermal source associated with highly tectonized seafloor that may be indicative of serpentinizing ultramafic outcrops. Consistent with this hypothesis, the hydrothermal plume signals we have detected exhibit a high methane to manganese ratio of 2–3:1. This is higher than that typical of volcanically hosted vent sites and provides further evidence that the source of the plume signals reported here is most probably a high-temperature hydrothermal field that experiences some ultramafic influence (compare to Rainbow and Logachev sites, Mid-Atlantic Ridge). While such sites have previously been invoked to be common on the SW Indian Ridge, this may be the first such site to be located along the Arctic ultra-slow spreading ridge system.
    Description: Connelly and German were funded by NERC grant NER/B/S/ 2000/00755, NERC Core Strategic Funding at NOC, and the ChEss project of the Census of Marine Life.
    Keywords: Hydrothermal ; Arctic ; Serpentinization ; Knipovich Ridge
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 6 (2005): Q05006, doi:10.1029/2004GC000881.
    Description: We analyzed in detail the geology of the median valley floor of the Mariana Basin slow-spreading ridge using sea surface geophysical data and a high-resolution deep-tow side-scan sonar survey over one spreading segment. Analysis of surface magnetic data indicates highly asymmetric accretion, with the half-spreading rate on the western side of the basin being two to three times larger than on the eastern side. Surface magnetic and reflectivity data together suggest that asymmetric spreading is accomplished through eastward ridge jumps of ∼10 km of amplitude. Deep-tow backscatter data indicate along-axis variations of the volcanic processes with the emplacement of smooth and hummocky flows at the segment center and end, respectively. This variation likely relates to changes in the effusion rate due to the deepening or even disappearance of the magma chamber toward the segment end. Concerning tectonic processes, we find a power law distribution of the fractures, with an exponent of 1.74. This suggests that within the inner valley floor, fracture growth prevails over fracture nucleation and coalescence and that fractures accommodate less than 8% of the strain. According to our calculation based on a ratio of 0.02 to 0.03 between the vertical displacement and the length of faults, the amount of tectonic strain accommodated in the inner valley floor would consistently be ∼1.1–3.4%. Data also show two distinct sets of fractures. One trend is parallel to the rift direction at the segment center (∼N160°E) and perpendicular to the plate separation direction. Another set trends ∼17° oblique to this direction (∼N175°E) and is located over the eastern part of the valley, in the vicinity of a major bounding fault also trending ∼N175°E, that is, obliquely to the direction of plate motion. We modeled the stress field near a major fault that is oblique to the regional stress field associated with plate separation using a three-dimensional boundary element approach. We found that the orientation of the predicted fissuring near the oblique fault is locally rotated by ∼15° due to a flexure of the bending plate close to this fault.
    Description: The KR03-12 cruise was funded by both JAMSTEC and ORI. This research was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the United States Geological Survey.
    Keywords: Back arc ; Deep tow ; Faulting ; Ridge ; Side-scan sonar ; Volcanism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 2992909 bytes
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-05-02
    Description: High-resolution vector magnetic measurements were performed on five hydrothermal vent fields of the back-arc spreading region of the southern Mariana Trough using Shinkai 6500, a deep-sea manned submersible. A new 3-D forward scheme was applied that exploits the surrounding bathymetry and varying altitudes of the submersible to estimate absolute crustal magnetization. The results revealed that magnetic-anomaly-derived absolute magnetizations show a reasonable correlation with natural remanent magnetizations of rock samples collected from the seafloor of the same region. The distribution of magnetic-anomaly-derived absolute magnetization suggests that all five andesite-hosted hydrothermal fields are associated with a lack of magnetization, as is generally observed at basalt-hosted hydrothermal sites. Furthermore, both the Pika and Urashima sites were found to have their own distinct low-magnetization zones, which could not be distinguished in magnetic anomaly data collected at higher altitudes by autonomous underwater vehicle due to their limited extension. The spatial extent of the resulting low magnetization is approximately 10 times wider at off-axis sites than at on-axis sites, possibly reflecting larger accumulations of nonmagnetic sulfides, stockwork zones, and/or alteration zones at the off-axis sites.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...