GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-01-31
    Description: Highlights • Major eruption of Ilopango volcano, El Salvador occurred in the first half of the 6th century. • Ilopango eruption is consistent with ‘mystery’ eruption of 540 CE that caused global cooling. • Magnitude 7 event ranks as one of the 10 largest on Earth in past 7000 years. • Impacts on the Maya of Central America were severe, including estimated 100,000 + fatalities. Abstract Ilopango volcano (El Salvador) erupted violently during the Maya Classic Period (250–900 CE) in a densely-populated and intensively-cultivated region of the southern Maya realm, causing regional abandonment of an area covering more than 20,000 km2. However, neither the regional nor global impacts of the Tierra Blanca Joven (TBJ) eruption in Mesoamerica have been well appraised due to limitations in available volcanological, chronological, and archaeological observations. Here we present new evidence of the age, magnitude and sulfur release of the TBJ eruption, establishing it as one of the two hitherto unidentified volcanic triggers of a period of stratospheric aerosol loading that profoundly impacted Northern Hemisphere climate and society between circa 536 and 550 CE. Our chronology is derived from 100 new radiocarbon measurements performed on three subfossil tree trunks enveloped in proximal TBJ pyroclastic deposits. We also reassess the eruption magnitude using terrestrial (El Salvador, Guatemala, Honduras) and near-shore marine TBJ tephra deposit thickness measurements. Together, our new constraints on the age, eruption size (43.6 km3 Dense Rock Equivalent of magma, magnitude = 7.0) and sulfur yield (∼9–90 Tg), along with Ilopango's latitude (13.7° N), squarely frame the TBJ as the major climate-forcing eruption of 539 or 540 CE identified in bipolar ice cores and sourced to the tropics. In addition to deepening appreciation of the TBJ eruption's impacts in Mesoamerica, linking it to the major Northern Hemisphere climatic downturn of the mid-6th century CE offers another piece in the puzzle of understanding Eurasian history of the period.
    Type: Article , PeerReviewed
    Format: other
    Format: text
    Format: image
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-08
    Description: Volcanic paroxysmal explosive activity has enormous potential destructive power and usually causes widespread damages to the Society (NAS–National Academies of Sciences Engineering Medicine, 2017). Serious problems can occur even during explosive activity related to modest eruptions, such as the case of the 2010 Eyiafjallajokull eruption in Iceland that paralyzed the air traffic in the European continent and in the North Atlantic. In general, a crucial issue, and also an intriguing challenge, is to evaluate the state of the preparatory phase leading to an eruption. It is important to understand the characteristics of the volcano state both for the long-term preparatory phases, usually anticipating the strongest eruptions, and also for the medium- to short-term phases preceding the more frequent and usually less powerful eruptions, but with more immediate consequences. The first paper of the collection gives an overview of the long-term dynamics of the volcanic paroxysmal activity at andesitic and dacitic volcanoes during 1960–2010 (Zobin). In this study two groups of eruptions with VEI 5–6 and VEI 3–4 were considered. The main tool used was the seismic monitoring of the volcanoes. The eruptions of the first group are characterized by long periods of quiescence (longer than 120 years) and precursory volcano tectonic seismic swarms. The second group develops in more individual styles, each typical of a certain volcano. The study suggests that the eruptions with higher VEI are related to a plugged magmatic conduit, whereas eruptions with lower VEI are usually associated to open conduits. As a specific case of volcano producing frequent explosive eruptions with low VEI, the second paper of this Research Topic considers the Etna eruptive activity during 2009–2017 by using ground deformation and strain data (Aloisi et al.). Etna volcano was characterized over this period by an incredible lively eruptive activity. This comprised 44 lava fountain episodes from the New South East Crater, two sequences of lava fountains from the Voragine crater, as well as some periods of summit effusive activity with a more prolonged supply of lava flows. The authors produced a complete representation of the different sources that characterized the different periods both in the medium-term (i.e., the preparatory phases showing inflation and the eruptive phases showing deflation) and in the short-term (i.e., the fast discharge associated with eruptive events). Ganci et al. investigated the middle-term behavior of Mt. Etna. Detection of the thermal anomalies allowed retrieval of radiative power time-series and associated volumes, and thus characterization of each of the paroxysms in terms of intensity and magnitude. Topographic data derived from satellite imagery gave the total volume of products erupted from 2005 to 2015. Overall, the integration of thermal and topographic data highlighted that the 2011–2012 lava fountains had higher intensity than those of 2013–2015 and that the total volumes erupted from 2005 to 2015 resulted being below those typically erupted by Mt. Etna in a decadal time scale. Recent eruptive activity from Etna offered a great opportunity to measure the SO2 gas flux from ground-based and satellite instruments prior to, during and after the paroxysmal sequences (D’Aleo et al.), allowing to detect the switch from an active crater to another on the basis of increased and decreased SO2 flux. Based on these measurements, the degassed magma volume was estimated, leading to inferring on the fraction of erupted magma compared to the amount emplaced into the shallow feeding system. Another important parameter essential for hazard assessment is Mass Eruption Rate (MER), which has been estimated for 47 paroxysmal episodes using a Doppler Radar installed on Etna (Freret-Lorgeril et al.). The Lidar detection of the volcanic plume, volcanic ash concentration in atmosphere, and characterization of optical properties of volcanic particles, represent the distal characterization of the paroxysmal activity, essential for modeling volcanic ash clouds and their impact (Boselli et al.). Mapping of the erupted products and measurement and retrieval of the main eruptive parameters are crucial to understand the eruptive dynamics and investigate into the volcano shallow feeder system. Nowadays, volcanology can take advantage from different measurement techniques and methodologies spanning from direct field observations to ground- and satellite-based remote sensing. Indeed, the opportunity to inspect volcanic phenomena by multidisciplinary approaches allows getting overall view of the volcanic scenarios. The study of the tephra fallout produced by the 3 March 2015 lava fountain at Villarrica basaltic-andesitic volcano by field surveys, laboratory analysis, and satellite imagery provided characterization and parameterization of the paroxysm (Romero et al.). The integration of the key constraints shaded light in the mechanism that triggered the paroxysmal explosion in a volcano that commonly shows persistent activity associated to lava lake-like dynamics. At Mt. Etna, the multidisciplinary approach permitted the study of the recent paroxysmal activity at the volcano summit at both short- and long-time scale. Andronico et al. focused on the 25–26 October 2013 lava fountain. Using field observations and ground- and satellite-based imagery and photogrammetry, they mapped the lava flow field and estimated the volume of the pyroclastic cone. Mapping of the fallout deposit in field and laboratory analysis gave grain size distribution, composition, and total erupted mass. The hazards posed by explosive activity is a function of the size of the eruption and of the elevation reached by the eruptive column and ash plume, that may impact the atmosphere or even the stratosphere and affect aviation, infrastructures, viability, climate, and health. The Volcanic Explosivity Index (VEI; Newhall and Self, 1982) is a way to estimate the size of an explosive eruption, with a VEI 6 posing severe hazard all over the country and a VEI 2–4 having only local effects. The last two papers of this collection evaluate the hazard posed by two end-member eruptions, such as the VEI 6 potential for Öræfajökull volcano in Iceland (Barsotti et al.) and the VEI 2–4 of Etna volcano in Sicily (Calvari et al.). Barsotti et al. use a numerical model to assess the impact on infrastructures in Iceland caused by a rare but potentially highly destructive activity occurring at the Öræfajökull volcano, which experienced this event only once during the last 1100 years. Etna instead has experienced hundreds of mild VEI 2–4 eruptions during the last decades, and Calvari et al. statistically analyze several of these events to propose an empirical law that allows them to evaluate the maximum elevation of an ash plume as soon as the lava fountain height has reached the peak steady value, measured using the images recorded by the monitoring thermal camera network. Most of the papers comprised in this collection pertain to Mt. Etna, which has been identified as Decade Volcano by the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI), thus confirming itself as an ideal volcano laboratory (Bonaccorso et al., 2004). The empirical laws thus far proposed for predicting the extension and impact of the eruptive clouds (Calvari et al.) are thus applicable just to this volcano, and in the future a greater effort has to be dedicated to multidisciplinary studies involving more volcanoes and cross-analyses of their data (e.g., Zobin) in order to obtain general statements, laws and/or formulas that could be applicable to those volcanoes which are less monitored. More peculiar and still unknown processes could arise from in depth studies of other basaltic volcanoes from the Earth and other planets, increasing our ability to understand and predict their behavior. A growing attention is dedicated to the use of UAV (unmanned aerial vehicles; e.g., Neri et al., 2017; Favalli et al., 2018), remote-sensing (Boselli et al.; Calvari et al.; D’Aleo et al.; Freret-Lorgeril et al.) and satellite measurements (Ganci et al.) for their safety issues, low cost and broad perspective, that result in an important integration of field studies (Andronico et al.; Romero et al.), numerical simulations (Barsotti et al.), and laboratory experiments (e.g., Dellino et al., 2010). It is a general feeling that the innovative methods will grow even more in the future, possibly coupled with virtual reality, allowing results and simulations of volcanic processes impossible to imagine nowadays.
    Description: Published
    Description: Article 227
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: explosive eruptions ; paroxysms ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-08
    Description: Magmatic degassing, typically measured as SO2 flux, plays a fundamental role in controlling volcanic eruption style and is one of the key parameters used by volcano observatories to assess volcanic unrest and detect eruption precursors. Volcanic tremor, the integrated amplitude of seismic energy release over a range of frequencies, is also a key parameter in volcano monitoring. A connection between volcanic degassing and tremor has been inferred through correlations between the signals which are often, but not always, observed during periods of unrest or eruption. However, data are often equivocal and our understanding of the physical processes, which couple degassing with tremor are still evolving. New insights into degassing-tremor coupling can be made by investigation of the long-term relationship between degassing and tremor, focusing on the frequency-dependence of tremor and passive degassing behavior. In this study, we examine how long-term SO2 emission rates and volcanic tremor on Mt. Etna, track rapid variability in eruptive dynamics. Correlations between SO2 flux and tremor are explored in both quiescent and eruptive periods, comparing the two parameters at both long and short time-scales (〈 〈 1 day) for 2 years. Our analysis reveals that over month-long timescales passive degassing of SO2 and tremor tend to be well-correlated, but these correlations are lost over shorter timescales. This reflects a coupling process between passive degassing and tremor, produced by a combination of gas flow through permeable magma and the convective flow of magma within the conduit. Short-term correlations are lost because variations in the continuous degassing process are relatively small compared with the overall degassing rate and fall below measurement noise. During eruptive periods strong correlations are observed between degassing and tremor, with a significant contribution of higher frequency signal in tremor, controlled by eruptive style. These observations suggest that in syneruptive periods the tremor source is dominated by the coupling between the eruption column and the ground through infrasonic waves, rather than conduit processes. Our results demonstrate the importance of high quality long-term observations and offer new insights into the physical mechanisms which couple degassing and volcanic tremor at active volcanoes.
    Description: Published
    Description: Article 157
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Mt. Etna ; SO2 flux ; volcanic tremor ; eruptive and quiescent degassing ; volcano monitoring ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-06-08
    Description: With at least four eruptions over the last 20 years, Sirung is currently one of the more active volcanoes in Indonesia. However, due to its remoteness, very little is known about the volcano and its hyperacid crater lake. We report here on the first measurements of gas and heat emissions from the volcano. Notable is the substantial heat loss from the crater lake surface, amounting to 220 MW. In addition, ~17 Gg of SO2, representing 0.8% of Indonesian volcanic SO2 contribution into the atmosphere, ~11 Gg of H2S, ~17 Gg of CO2, and ~550 Gg of H2O are discharged into the atmosphere from the volcano annually. The volatiles degassed from Sirung magmas are subjected to hydrothermal fluid-rock interactions and sulfide depositions, initiated by the disproportionation of SO2. These processes lead to distinct gas compositions and changing lake water chemistry (in the subcraters and the main crater lake). However, the occurrence of SO2-rich fluids and strong gas flux appear to highlight a rapid fluid transfer to surface, avoiding re-equilibration with lower temperature rocks/fluids in the conduits.
    Description: Published
    Description: 60
    Description: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-06-08
    Description: The proximity of the major city of Arequipa to El Misti has focused attention on the hazards posed by the active volcano. Since its last major eruption in the fifteenth century, El Misti has experienced a series of modest phreatic eruptions and fluctuating fumarolic activity. Here, we present the first measurements of the compositions of gas emitted from the lava dome in the summit crater. The gas composition is found to be fairly dry with a H2O/SO2 molar ratio of 32 ± 3, a CO2/ SO2 molar ratio of 2.7 ± 0.2, a H2S/SO2 molar ratio of 0.23 ± 0.02 and a H2/SO2 molar ratio of 0.012 ± 0.002. This magmatic gas signature with minimal evidence of hydrothermal or wall rock interaction points to a shallow magma source that is efficiently outgassing through a permeable conduit and lava dome. Field and satellite observations show no evolution of the lava dome over the last decade, indicating sustained outgassing through an established fracture network. This stability could be disrupted if dome permeability were to be reduced by annealing or occlusion of outgassing pathways. Continued monitoring of gas composition and flux at El Misti will be essential to determine the evolution of hazard potential at this dangerous volcano.
    Description: Published
    Description: 46
    Description: 3V. Proprietà dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-06-08
    Description: New eruptive activity at volcanoes that have been long quiescent poses a significant challenge to hazard assessment, as it requires assessment of how the situation may develop. Such incipient activity is often poorly characterised as most quiescent volcanoes are poorly monitored, especially with respect to gas geochemistry. Here, we report gas composition and flux measurements from a new vent at the onset of eruptive activity at the Nevados de Chillán volcanic complex (Chile) in January-February 2016. The molar proportions of H2O, CO2, SO2, H2S and H2 gases are found to be 98.4, 0.97, 0.11, 0.01 and 0.5 mol % respectively. The mean SO2 flux recorded in early February 2016 during periods of eruptive discharge amounts to 0.4–0.6 kg s􀀀1. We show that magmatic gases were involved in this activity, associated with a sequence of eruptions. Tephra ejected by the first blast of 8 January are dominated by lithic fragments of dacitic composition. By contrast the tephra ejected from a subsequent eruption contains both lithic fragments of dense dacite, and a fresher, sparsely vesicular material of basaltic andesite composition. By October 2017, the ejected tephra was again dominated by dense dacitic lithic material. Together with seismic and ground deformation evidence, these observations suggest that a small intrusion of basaltic to andesitic magma at shallow level led to the explosive activity. Our serendipitous survey, right at the onset of eruptive activity, provides a valuable window into the processes of reawakening of a dormant volcano.
    Description: Published
    Description: 19-32
    Description: 4V. Processi pre-eruttivi
    Description: N/A or not JCR
    Keywords: volcanic gases ; volcanic unrest ; trail by fire ; multi-GAS ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...