GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-30
    Description: Western North Pacific tropical cyclone (TC) model tracks are analyzed in two large multimodelensembles, spanning a large variety of models and multiple future climate scenarios. Two methodologiesare used to synthesize the properties of TC tracks in this large data set: cluster analysis and mass momentellipses. First, the models’ TC tracks are compared to observed TC tracks’ characteristics, and a subset ofthe models is chosen for analysis, based on the tracks’ similarity to observations and sample size. Potentialchanges in track types in a warming climate are identified by comparing the kernel smoothed probabilitydistributions of various track variables in historical and future scenarios using a Kolmogorov-Smirnovsignificance test. Two track changes are identified. The first is a statistically significant increase in thenorth-south expansion, which can also be viewed as a poleward shift, as TC tracks are prevented fromexpanding equatorward due to the weak Coriolis force near the equator. The second change is an eastwardshift in the storm tracks that occur near the central Pacific in one of the multimodel ensembles, indicatinga possible increase in the occurrence of storms near Hawaii in a warming climate. The dependence of theresults on which model and future scenario are considered emphasizes the necessity of including multiplemodels and scenarios when considering future changes in TC characteristics.
    Description: Published
    Description: 9721–9744
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 3829-3852, doi:10.1175/JCLI-D-16-0479.1.
    Description: This study provides an assessment of the uncertainty in ocean surface (OS) freshwater budgets and variability using evaporation E and precipitation P from 10 atmospheric reanalyses, two combined satellite-based E − P products, and two observation-based salinity products. Three issues are examined: the uncertainty level in the OS freshwater budget in atmospheric reanalyses, the uncertainty structure and association with the global ocean wet/dry zones, and the potential of salinity in ascribing the uncertainty in E − P. The products agree on the global mean pattern but differ considerably in magnitude. The OS freshwater budgets are 129 ± 10 (8%) cm yr−1 for E, 118 ± 11 (9%) cm yr−1 for P, and 11 ± 4 (36%) cm yr−1 for E − P, where the mean and error represent the ensemble mean and one standard deviation of the ensemble spread. The E − P uncertainty exceeds the uncertainty in E and P by a factor of 4 or more. The large uncertainty is attributed to P in the tropical wet zone. Most reanalyses tend to produce a wider tropical rainband when compared to satellite products, with the exception of two recent reanalyses that implement an observation-based correction for the model-generated P over land. The disparity in the width and the extent of seasonal migrations of the tropical wet zone causes a large spread in P, implying that the tropical moist physics and the realism of tropical rainfall remain a key challenge. Satellite salinity appears feasible to evaluate the fidelity of E − P variability in three tropical areas, where the uncertainty diagnosis has a global indication.
    Description: Primary support for the study is provided by the NOAAModeling, Analysis, Predictions, and Projections (MAPP) Program’s Climate Reanalysis Task Force (CRTF) through Grant NA13OAR4310106.
    Description: 2017-11-02
    Keywords: Hydrologic cycle ; Precipitation ; Evaporation ; Salinity ; Water budget ; Reanalysis data
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-04-01
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: bookpart , doc-type:bookPart
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Climate Dynamics 49 (2017): 3327–3344, doi:10.1007/s00382-016-3516-6.
    Description: NCEP/DOE reanalysis (R2) and Climate Forecast System Reanalysis (CFSR) surface fluxes are widely used by the research community to understand surface flux climate variability, and to drive ocean models as surface forcings. However, large discrepancies exist between these two products, including (1) stronger trade winds in CFSR than in R2 over the tropical Pacific prior 2000; (2) excessive net surface heat fluxes into ocean in CFSR than in R2 with an increase in difference after 2000. The goals of this study are to examine the sensitivity of ocean simulations to discrepancies between CFSR and R2 surface fluxes, and to assess the fidelity of the two products. A set of experiments, where an ocean model was driven by a combination of surface flux component from R2 and CFSR, were carried out. The model simulations were contrasted to identify sensitivity to different component of the surface fluxes in R2 and CFSR. The accuracy of the model simulations was validated against the tropical moorings data, altimetry SSH and SST reanalysis products. Sensitivity of ocean simulations showed that temperature bias difference in the upper 100m is mostly sensitive to the differences in surface heat fluxes, while depth of 20°C (D20) bias difference is mainly determined by the discrepancies in momentum fluxes. D20 simulations with CFSR winds agree with observation well in the western equatorial Pacific prior 2000, but have large negative bias similar to those with R2 winds after 2000, partly because easterly winds over the central Pacific were underestimated in both CFSR and R2. On the other hand, the observed temperature variability is well reproduced in the tropical Pacific by simulations with both R2 and CFSR fluxes. Relative to the R2 fluxes, the CFSR fluxes improve simulation of interannual variability in all three tropical oceans to a varying degree. The improvement in the tropical Atlantic is most significant and is largely attributed to differences in surface winds.
    Keywords: CFSR ; NCEP/DOE reanalysis (R2) ; Surface wind stress/heat flux validation ; Ocean model ; Tropical moored buoy data
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Subramanian, A. C., Balmaseda, M. A., Centurioni, L., Chattopadhyay, R., Cornuelle, B. D., DeMott, C., Flatau, M., Fujii, Y., Giglio, D., Gille, S. T., Hamill, T. M., Hendon, H., Hoteit, I., Kumar, A., Lee, J., Lucas, A. J., Mahadevan, A., Matsueda, M., Nam, S., Paturi, S., Penny, S. G., Rydbeck, A., Sun, R., Takaya, Y., Tandon, A., Todd, R. E., Vitart, F., Yuan, D., & Zhang, C. Ocean observations to improve our understanding, modeling, and forecasting of subseasonal-to-seasonal variability. Frontiers in Marine Science, 6, (2019): 427, doi:10.3389/fmars.2019.00427.
    Description: Subseasonal-to-seasonal (S2S) forecasts have the potential to provide advance information about weather and climate events. The high heat capacity of water means that the subsurface ocean stores and re-releases heat (and other properties) and is an important source of information for S2S forecasts. However, the subsurface ocean is challenging to observe, because it cannot be measured by satellite. Subsurface ocean observing systems relevant for understanding, modeling, and forecasting on S2S timescales will continue to evolve with the improvement in technological capabilities. The community must focus on designing and implementing low-cost, high-value surface and subsurface ocean observations, and developing forecasting system capable of extracting their observation potential in forecast applications. S2S forecasts will benefit significantly from higher spatio-temporal resolution data in regions that are sources of predictability on these timescales (coastal, tropical, and polar regions). While ENSO has been a driving force for the design of the current observing system, the subseasonal time scales present new observational requirements. Advanced observation technologies such as autonomous surface and subsurface profiling devices as well as satellites that observe the ocean-atmosphere interface simultaneously can lead to breakthroughs in coupled data assimilation (CDA) and coupled initialization for S2S forecasts. These observational platforms should also be tested and evaluated in ocean observation sensitivity experiments with current and future generation CDA and S2S prediction systems. Investments in the new ocean observations as well as model and DA system developments can lead to substantial returns on cost savings from disaster mitigation as well as socio–economic decisions that use S2S forecast information.
    Description: AS was funded by NOAA Climate Variability and Prediction Program (NA14OAR4310276) and the NSF Earth System Modeling Program (OCE1419306). CD was funded by NA16OAR4310094. SG and DG were funded by NASA awards NNX14AO78G and 80NSSC19K0059. DY was supported by NSFC (91858204, 41720104008, and 41421005).
    Keywords: Subseasonal ; Seasonal ; Predictions ; Air-sea interaction ; Satellite ; Argo ; Gliders ; Drifters
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-01
    Description: Using an international, multi-model suite of historical forecasts from the World Climate Research Programme (WCRP) Climate-system Historical Forecast Project (CHFP), we compare the seasonal prediction skill in boreal wintertime between models that resolve the stratosphere and its dynamics (“high-top”) and models that do not (“low-top”). We evaluate hindcasts that are initialized in November, and examine the model biases in the stratosphere and how they relate to boreal wintertime (Dec-Mar) seasonal forecast skill. We are unable to detect more skill in the high-top ensemble-mean than the low-top ensemble-mean in forecasting the wintertime North Atlantic Oscillation, but model performance varies widely. Increasing the ensemble size clearly increases the skill for a given model. We then examine two major processes involving stratosphere-troposphere interactions (the El Niño-Southern Oscillation/ENSO and the Quasi-biennial Oscillation/QBO) and how they relate to predictive skill on intra-seasonal to seasonal timescales, particularly over the North Atlantic and Eurasia regions. High-top models tend to have a more realistic stratospheric response to El Niño and the QBO compared to low-top models. Enhanced conditional wintertime skill over high-latitudes and the North Atlantic region during winters with El Niño conditions suggests a possible role for a stratospheric pathway.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-01-31
    Description: We quantify seasonal prediction skill of tropical winter rainfall in 14 climate forecast systems. High levels of seasonal prediction skill exist for year‐to‐year rainfall variability in all tropical ocean basins. The tropical East Pacific is the most skilful region, with very high correlation scores, and the tropical West Pacific is also highly skilful. Predictions of tropical Atlantic and Indian Ocean rainfall show lower but statistically significant scores. We compare prediction skill (measured against observed variability) with model predictability (using single forecasts as surrogate observations). Model predictability matches prediction skill in some regions but it is generally greater, especially over the Indian Ocean. We also find significant inter‐basin connections in both observed and predicted rainfall. Teleconnections between basins due to El Niño–Southern Oscillation (ENSO) appear to be reproduced in multi‐model predictions and are responsible for much of the prediction skill. They also explain the relative magnitude of inter‐annual variability, the relative magnitude of predictable rainfall signals and the ranking of prediction skill across different basins. These seasonal tropical rainfall predictions exhibit a severe wet bias, often in excess of 20% of mean rainfall. However, we find little direct relationship between bias and prediction skill. Our results suggest that future prediction systems would be best improved through better model representation of inter‐basin rainfall connections as these are strongly related to prediction skill, particularly in the Indian and West Pacific regions. Finally, we show that predictions of tropical rainfall alone can generate highly skilful forecasts of the main modes of extratropical circulation via linear relationships that might provide a useful tool to interpret real‐time forecasts.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: Near-term climate predictions — which operate on annual to decadal timescales — offer benefits for climate adaptation and resilience, and are thus important for society. Although skilful near-term predictions are now possible, particularly when coupled models are initialized from the current climate state (most importantly from the ocean), several scientific challenges remain, including gaps in understanding and modelling the underlying physical mechanisms. This Perspective discusses how these challenges can be overcome, outlining concrete steps towards the provision of operational near-term climate predictions. Progress in this endeavour will bridge the gap between current seasonal forecasts and century-scale climate change projections, allowing a seamless climate service delivery chain to be established.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-01-14
    Description: The Indian Ocean Geoid Low (IOGL) to the south of Indian sub-continent is the world's largest geoid anomaly. In this study, we investigate the seismic anisotropy of the lowermost mantle beneath the IOGL by analyzing splitting of high quality ScS phases corrected for source and receiver side upper mantle anisotropy. Results reveal significant anisotropy (1.01 in the $D^{\prime\prime}$layer. The observed fast axis polarization azimuths in the ray coordinate system indicate a TTI (transverse isotropy with a tilted axis of symmetry) style of anisotropy. Lattice Preferred Orientation (LPO) deformation of the palaeo-subducted slabs experiencing high shear strain is a plausible explanation for the observed anisotropy beneath the IOGL. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-01-10
    Description: Organic Letters DOI: 10.1021/acs.orglett.7b03776
    Print ISSN: 1523-7060
    Electronic ISSN: 1523-7052
    Topics: Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...