GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Book
    Book
    Cambridge, Massachusetts : The MIT Press
    Keywords: Climatic changes ; Greenhouse effect, Atmospheric ; Global warming ; Climatic changes ; Global warming ; Greenhouse effect, Atmospheric ; Klimaänderung
    Type of Medium: Book
    Pages: x, 69 Seiten
    Edition: Updated edition
    ISBN: 9780262535915
    DDC: 363.738/74
    RVK:
    RVK:
    Language: English
    Note: Literaturverzeichnis: Seite [67]-69
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Book
    Book
    New York [u.a.] : Oxford Univ. Press
    Keywords: Convection (Meteorology) ; Atmospheric physics ; Convection (Meteorology) ; Atmospheric physics ; Atmosphere Mathematical models ; Atmosphäre ; Konvektion
    Type of Medium: Book
    Pages: X, 580 S , Ill., graph. Darst., Kt
    ISBN: 0195066308 , 9780195066302
    DDC: 551.515
    RVK:
    RVK:
    Language: English
    Note: Literaturangaben
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Book
    Book
    Oxford [u.a.] : Oxford Univ. Press
    Keywords: Hurricanes History ; Hurricanes History ; Hurrikan ; Geschichte ; Hurrikan ; Geschichte
    Type of Medium: Book
    Pages: X, 285 S , Ill., graph. Darst., Kt
    ISBN: 0195149416 , 9780195149418
    DDC: 551.55209
    RVK:
    Language: English
    Note: Includes bibliographical references and index
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 326 (1987), S. 483-485 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] We shall first review a simple model3 of the mature tropical cyclone that is capable of predicting the maximum intensity that can be achieved by such storms as a function of environmental conditions. We then apply this model to the estimation of maximum cyclone intensity under a range of climates, ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 401 (1999), S. 665-669 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] To establish useful warning systems for hurricanes, it is necessary to accurately predict both hurricane intensity and track. But although the forecasting of hurricane tracks has improved over the past 30 years, the factors that control the intensity of hurricanes are still poorly understood, ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 374 (1995), S. 347-350 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The use of fossil leaf assemblages for palaeoaltimetry consists of two steps: first, estimating from fossil plants a climate parameter that varies with altitude (like mean annual temperature), and second, using differences in that parameter from separate sites to estimate elevation differences6, ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-30
    Description: Western North Pacific tropical cyclone (TC) model tracks are analyzed in two large multimodelensembles, spanning a large variety of models and multiple future climate scenarios. Two methodologiesare used to synthesize the properties of TC tracks in this large data set: cluster analysis and mass momentellipses. First, the models’ TC tracks are compared to observed TC tracks’ characteristics, and a subset ofthe models is chosen for analysis, based on the tracks’ similarity to observations and sample size. Potentialchanges in track types in a warming climate are identified by comparing the kernel smoothed probabilitydistributions of various track variables in historical and future scenarios using a Kolmogorov-Smirnovsignificance test. Two track changes are identified. The first is a statistically significant increase in thenorth-south expansion, which can also be viewed as a poleward shift, as TC tracks are prevented fromexpanding equatorward due to the weak Coriolis force near the equator. The second change is an eastwardshift in the storm tracks that occur near the central Pacific in one of the multimodel ensembles, indicatinga possible increase in the occurrence of storms near Hawaii in a warming climate. The dependence of theresults on which model and future scenario are considered emphasizes the necessity of including multiplemodels and scenarios when considering future changes in TC characteristics.
    Description: Published
    Description: 9721–9744
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 30 (2017): 1233-1243, doi:10.1175/JCLI-D-16-0496.1.
    Description: A downscaling approach is applied to future projection simulations from four CMIP5 global climate models to investigate the response of the tropical cyclone (TC) climatology over the North Pacific basin to global warming. Under the influence of the anthropogenic rise in greenhouse gases, TC-track density, power dissipation, and TC genesis exhibit robust increasing trends over the North Pacific, especially over the central subtropical Pacific region. The increase in North Pacific TCs is primarily manifested as increases in the intense and relatively weak TCs. Examination of storm duration also reveals that TCs over the North Pacific have longer lifetimes under global warming. Through a genesis potential index, the mechanistic contributions of various physical climate factors to the simulated change in TC genesis are explored. More frequent TC genesis under global warming is mostly attributable to the smaller vertical wind shear and greater potential intensity (primarily due to higher sea surface temperature). In contrast, the effect of the saturation deficit of the free troposphere tends to suppress TC genesis, and the change in large-scale vorticity plays a negligible role.
    Description: The authors acknowledge support from the Strategic Environmental Research and Development Program (SERDP) (RC-2336). SERDP is the environmental science and technology program of the U.S. Department of Defense (DoD) in partnership with the U.S. Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA).
    Description: 2017-08-01
    Keywords: Tropical cyclones
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 114 (2017): 11861-11866, doi: 10.1073/pnas.1703568114 .
    Description: The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970–2005 to 4.0–5.1 m above mean tidal level by 2080–2100 and ranges from 5.0–15.4 m above mean tidal level by 2280–2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970–2005 and further decreases to ∼5 y by 2030–2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280–2300 for scenarios that include Antarctica’s potential partial collapse.
    Description: The authors acknowledge funding for this study from NOAA Grants #424-18 45GZ and #NA11OAR4310101, National Science Foundation (NSF) Grants OCE 1458904, EAR 1520683, and EAR Postdoctoral Fellowship 1625150, the Community Foundation of New Jersey, and David and Arleen McGlade.
    Keywords: Tropical cyclones ; Flood height ; Storm surge ; New York City ; Sea-level rise ; Hurricane ; Coastal flooding ; Storm tracks
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q09V10, doi:10.1029/2008GC002043.
    Description: Patterns of overwash deposition observed within back-barrier sediment archives can indicate past changes in tropical cyclone activity; however, it is necessary to evaluate the significance of observed trends in the context of the full range of variability under modern climate conditions. Here we present a method for assessing the statistical significance of patterns observed within a sedimentary hurricane-overwash reconstruction. To alleviate restrictions associated with the limited number of historical hurricanes affecting a specific site, we apply a recently published technique for generating a large number of synthetic storms using a coupled ocean-atmosphere hurricane model set to simulate modern climatology. Thousands of overwash records are generated for a site using a random draw of these synthetic hurricanes, a prescribed threshold for overwash, and a specified temporal resolution based on sedimentation rates observed at a particular site. As a test case we apply this Monte Carlo technique to a hurricane-induced overwash reconstruction developed from Laguna Playa Grande (LPG), a coastal lagoon located on the island of Vieques, Puerto Rico in the northeastern Caribbean. Apparent overwash rates in the LPG overwash record are observed to be four times lower between 2500 and 1000 years B.P. when compared to apparent overwash rates during the last 300 years. However, probability distributions based on Monte Carlo simulations indicate that as much as 65% of this drop can be explained by a reduction in the temporal resolution for older sediments due to a decrease in sedimentation rates. Periods of no apparent overwash activity at LPG between 2500 and 3600 years B.P. and 500–1000 years B.P. are exceptionally long and are unlikely to occur (above 99% confidence) under the current climate conditions. In addition, breaks in activity are difficult to produce even when the hurricane model is forced to a constant El Niño state. Results from this study continue to support the interpretation that the western North Atlantic has exhibited significant changes in hurricane climatology over the last 5500 years.
    Description: Funding for this research was provided by the Earth Systems History Program of the National Science Foundation, Risk Prediction Initiative, National Geographic Society, Coastal Ocean Institute at WHOI, and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research.
    Keywords: Tropical cyclones ; Paleotempestology ; Paleoclimate ; Holocene ; Climate change ; Sedimentology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...