GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (592)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2019-09-23
    Description: Highlights • Kuroshio Current proxy was established by statistical analyses on grain size spectrum. • Sr–Nd isotope analyses on Kuroshio grain size spectrum reveals source of Taiwan. • Synchronous shift in ENSO and the North Pacific Gyre is subject to the insolation. • Earth System Modeling results confirm our proxies-indicated Kuroshio Current strength. Abstract The Kuroshio Current (KC) is the northward branch of the North Pacific subtropical gyre (NPG) and exerts influence on the exchange of physical, chemical, and biological properties of downstream regions in the Pacific Ocean. Resolving long-term changes in the flow of the KC water masses is, therefore, crucial for advancing our understanding of the Pacific's role in global ocean and climate variability. Here, we reconstruct changes in KC dynamics over the past 20 ka based on grain-size spectra, clay mineral, and Sr–Nd isotope constraints of sediments from the northern Okinawa Trough. Combined with published sediment records surrounding the NPG, we suggest that the KC remained in the Okinawa Trough throughout the Last Glacial Maximum. Together with Earth-System-Model simulations, our results additionally indicate that KC intensified considerably during the early Holocene (EH). The synchronous establishment of the KC “water barrier” and the modern circulation pattern during the EH highstand shaped the sediment transport patterns. This is ascribed to the precession-induced increase in the occurrence of La Niña-like state and the strength of the East Asian summer monsoon. The synchronicity of the shifts in the intensity of the KC, Kuroshio extension, and El Niño/La Niña-Southern Oscillation (ENSO) variability may further indicate that the western branch of the NPG has been subject to basin-scale changes in wind stress curl over the North Pacific in response to low-latitude insolation. Superimposed on this long-term trend are high-amplitude, large century, and millennial-scale variations during last 5 ka, which are ascribed to the advent of modern ENSO when the equatorial oceans experienced stronger insolation during the boreal winter.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-06
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-11
    Description: Since the Last Glacial Maximum, ice has retreated through the fjords of the South Shetland Islands leaving a valuable record of submarine landforms behind. In this study, glacial landforms and sub-bottom characteristics have been mapped to investigate the late Holocene retreat behaviour of the Fourcade Glacier and to delineate past environmental processes in Potter Cove, King George Island. The comprehensive datasets include high-resolution swath bathymetry, shallow seismic profiling and one sediment core. Moraines, moraine incisions and glacial lineations were mapped on the sea floor in the inner part of the cove, whereas pockmarks, ice scour marks and channel structures were identified in the outer part. Sub-bottom characteristics have been assigned to different acoustic facies types indicating different depositional settings. The results reveal glacial recessions as well as stillstands and potential readvances during the late Holocene. Furthermore, the sediment record indicates that the Fourcade Glacier was situated inside the inner cove during the Little Ice Age (500–100 cal yr bp).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-03-09
    Description: Highlights • First fission track and (U-Th-Sm)/He data from eastern Marie Byrd Land • First direct dating of Cenozoic WARS activity outside the Ross Sea area • Structural model kinematically linking areas of extended crust within the WARS • Data on paleotopographic evolution providing boundary conditions for glaciation Abstract The West Antarctic Rift System is one of the largest continental rifts on Earth. Because it is obscured by the West Antarctic Ice Sheet, its evolution is still poorly understood. Here we present the first low-temperature thermochronology data from eastern Marie Byrd Land, an area that stretches ~ 1000 km along the rift system, in order to shed light on its development. Furthermore, we petrographically analysed glacially transported detritus deposited in the marine realm, offshore Marie Byrd Land, to augment the data available from the limited terrestrial exposures. Our data provide information about the subglacial geology, and the tectonic and morphologic history of the rift system. Dominant lithologies of coastal Marie Byrd Land are igneous rocks that intruded (presumably early Paleozoic) low-grade meta-sedimentary rocks. No evidence was found for un-metamorphosed sedimentary rocks exposed beneath the ice. According to the thermochronology data, rifting occurred in two episodes. The earlier occurred between ~ 100 and 60 Ma and led to widespread tectonic denudation and block faulting over large areas of Marie Byrd Land. The later episode started during the Early Oligocene and was confined to western Pine Island Bay area. This Oligocene tectonic activity may be linked kinematically to previously described rift structures reaching into Bellingshausen Sea and beneath Pine Island Glacier, all assumed to be of Cenozoic age. However, our data provide the first direct evidence for Cenozoic tectonic activity along the rift system outside the Ross Sea area. Furthermore, we tentatively suggest that uplift of the Marie Byrd Land dome only started at ~ 20 Ma; that is, nearly 10 Ma later than previously assumed. The Marie Byrd Land dome is the only extensive part of continental West Antarctica elevated above sea level. Since the formation of a continental ice sheet requires a significant area of emergent land, our data, although only based on few samples, imply that extensive glaciation of this part of West Antarctica may have only started since the early Miocene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-23
    Description: Glacial/interglacial changes in Southern Ocean's air-sea gas exchange have been considered as important mechanisms contributing to the glacial/interglacial variability in atmospheric CO2. Hence, understanding past variability in Southern Ocean intermediate to deep water chemistry and circulation is fundamental to constrain the role of these processes on modulating glacial/interglacial changes in the global carbon cycle. Our study focused on the glacial/interglacial variability in the vertical extent of southwest Pacific Antarctic Intermediate Water (AAIW). We compared carbon and oxygen isotope records from epibenthic foraminifera of sediment cores bathed in modern AAIW and Upper Circumpolar Deep Water (UCDW; 943-2066 m water depth) to monitor changes in water mass circulation spanning the past 350,000 years. We propose that pronounced freshwater input by melting sea ice into the glacial AAIW significantly hampered the downward expansion of southwest Pacific AAIW, consistent with climate model results for the Last Glacial Maximum. This process led to a pronounced upward displacement of the AAIW-UCDW interface during colder climate conditions and therefore to an expansion of the glacial carbon pool.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-05-19
    Description: This article presents a new comprehensive assessment of the Holocene hydrological variability of Lake Ladoga, northwest Russia. The reconstruction is based on oxygen isotopes of lacustrine diatom silica (δ18Odiatom) preserved in sediment core Co 1309, and is complemented by a diatom assemblage analysis and a survey of modern isotope hydrology. The data indicate that Lake Ladoga has existed as a freshwater reservoir since at least 10.8 cal. ka BP. The δ18Odiatom values range from +29.8 to +35.0‰, and relatively higher δ18Odiatom values around +34.7‰ between c. 7.1 and 5.7 cal. ka BP are considered to reflect the Holocene Thermal Maximum. A continuous depletion in δ18Odiatom since c. 6.1 cal. ka BP accelerates after c. 4 cal. ka BP, indicating Middle to Late Holocene cooling that culminates during the interval 0.8–0.2 cal. ka BP, corresponding to the Little Ice Age. Lake‐level rises result in lower δ18Odiatom values, whereas lower lake levels cause higher δ18Odiatom values. The diatom isotope record gives an indication for a rather early opening of the Neva River outflow at c. 4.4–4.0 cal. ka BP. Generally, overall high δ18Odiatom values around +33.5‰ characterize a persistent evaporative lake system throughout the Holocene. As the Lake Ladoga δ18Odiatom record is roughly in line with the 60°N summer insolation, a linkage to broader‐scale climate change is likely.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-04-29
    Description: Sedimentary architecture and morphogenetic evolution of a polar bay-mouth gravel-spit system are revealed based on topographic mapping, sedimentological data, radiocarbon dating and ground-penetrating radar investigations. Data document variable rates of spit progradation in reaction to atmospheric warming synchronous to the termination of the last glacial re-advance (LGR, 0.45–0.25 ka BP), the southern hemisphere equivalent of the Little Ice Age cooling period. Results show an interruption of spit progradation that coincides with the proposed onset of accelerated isostatic rebound in reaction to glacier retreat. Spit growth resumed in the late 19th century after the rate of isostatic rebound decreased, and continues until today. The direction of modern spit progradation, however, is rotated northwards compared with the growth axis of the early post-LGR spit. This is interpreted to reflect the shift and strengthening in the regional wind field during the last century. A new concept for the interplay of polar gravel-spit progradation and glacio-isostatic adjustment is presented, allowing for the prediction of future coastal evolution in comparable polar settings.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC343. Treffen des DGP Arbeitskreises "Geologie und Geophysik der Polargebiete", Fürstbischöfliches Schloss Münster, 2019-05-23-2019-05-24
    Publication Date: 2019-06-02
    Description: The ‘greenhouse climate’ of the Late Cretaceous epoch was one of the Earth’s warmest periods of the past 140 Ma, particularly at high latitudes. However, records allowing insights into terrestrial environmental conditions south of the Antarctic circle during that time are extremely rare. Hence, it remains highly elusive how the sensitive South Polar environment may have been impacted by such an extreme climate. Here we report a unique sedimentary sequence that was recovered with the MeBo-70 sea floor drill rig from the central Amundsen Sea Embayment shelf, West Antarctica. The record contains ~26 m of quartzitic sandstone underlain by a lithified swamp deposit that consists of a ~2 m-long complex and intact network of in-situ fossil plant roots embedded in a mudstone matrix. The lower ~1.5 m of this mudstone contain a highly diverse pollen and spore assemblage, documenting a temperate coastal lowland rain forest environment with mean annual temperatures of 11-15°C at a palaeolatitude of 77°S. Hence, the drill record provides the hitherto southernmost evidence of Cretaceous terrestrial environmental conditions and reveals a ‘greenhouse climate’ that was capable of maintaining a temperate environment much further south than previously known. The predictive capabilities of model simulations for high-latitude climate and environment characteristics for this critical period of Earth’s climatic history can therefore now be evaluated more reliably.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-13
    Description: The importance of macrobenthos in benthic‐pelagic coupling and early diagenesis of organic carbon (OC) has long been recognized but has not been quantified at a regional scale. By using the southern North Sea as an exemplary area we present a modelling attempt to quantify the budget of total organic carbon (TOC) reworked by macrobenthos in seafloor surface sediments. Vertical profiles in sediments collected in the field indicate a significant but nonlinear correlation between TOC and macrobenthic biomass. A mechanistic model is used to resolve the bi‐directional interaction between TOC and macrobenthos. A novelty of this model is that bioturbation is resolved dynamically depending on variations in local food resource and macrobenthic biomass. The model is coupled to 3D hydrodynamic‐biogeochemical simulations to hindcast the mutual dependence between sedimentary TOC and macrobenthos from 1948 to 2015. Agreement with field data reveals a satisfactory model performance. Our simulations show that the preservation of TOC in the North Sea sediments is not only determined by pelagic conditions (hydrodynamic regime and primary production) but also by the vertical distribution of TOC, bioturbation intensity, and the vertical positioning of macrobenthos. Macrobenthos annually ingest 20%–35% and in addition vertically diffuse 11%–22% of the total budget of TOC in the upper‐most 30 cm sediments in the southern North Sea. This result indicates a central role of benthic animals in modulating the OC cycling at the sediment‐water interface of continental margins.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-08-10
    Description: Sediments of sub-Antarctic islands have been proposed to be important contributors to natural iron fertilization in the Southern Ocean [1, 2]. This potential contribution depends on biogeochemical processes within the sediment that may result in an iron benthic flux, most likely related to the degradation of organic matter (OM). Yet, the OM degradation pathways vary strongly among different sedimentary settings. We elucidate the role of environmental factors on the prevailing biogeochemical pathways and reaction rates at three contrasting sites of South Georgia, using comprehensive solid-phase and pore-water analyses, as well as transportreaction modelling. Samples were obtained along a transect from a glacial fjord towards the shelf during cruise ANTXXIX/ 4 of RV POLARSTERN in 2013. Oxygen penetration depth at all sites is 〈1 cm. Sediments recovered within the fjord are dominated by dissimilatory iron reduction (DIR) and show very high dissolved Fe2+ concentrations of up to 760 μM, while sulfide was not detected. In addition, Fe reduction below the sulfate/methane transition was observed. High input of reactive iron phases, possibly enhanced by bioturbation and bubble ebullition, appear to favour DIR as the dominant metabolic process for OM degradation in the basin like fjord. Shelf sediments outside the fjord are sulfidic throughout, with H2S formed primarily by anaerobic oxidation of methane. The conversion of Fe oxides into Fe sulfides significantly alters the initial sediment composition along the shelf, and impact the availability of iron to the water column. OM is of marine origin at all three sites (C:N~7), indicating that Fe oxide availability and reactivity rather than the carbon source determine whether iron or sulfate reduction dominantes. [1] Moore & Braucher (2008) Biogeosciences 5, 631-656. [2] Borrione et al., (2014) Biogeosciences 11, 1981–2001.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...