GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (10)
  • 1
    Publication Date: 2021-01-08
    Description: The ability of state‐of‐the‐art regional climate models to simulate cyclone activity in the Arctic is assessed based on an ensemble of 13 simulations from 11 models from the Arctic‐CORDEX initiative. Some models employ large‐scale spectral nudging techniques. Cyclone characteristics simulated by the ensemble are compared with the results forced by four reanalyses (ERA‐Interim, National Centers for Environmental Prediction‐Climate Forecast System Reanalysis, National Aeronautics and Space Administration‐Modern‐Era Retrospective analysis for Research and Applications Version 2, and Japan Meteorological Agency‐Japanese 55‐year reanalysis) in winter and summer for 1981–2010 period. In addition, we compare cyclone statistics between ERA‐Interim and the Arctic System Reanalysis reanalyses for 2000–2010. Biases in cyclone frequency, intensity, and size over the Arctic are also quantified. Variations in cyclone frequency across the models are partly attributed to the differences in cyclone frequency over land. The variations across the models are largest for small and shallow cyclones for both seasons. A connection between biases in the zonal wind at 200 hPa and cyclone characteristics is found for both seasons. Most models underestimate zonal wind speed in both seasons, which likely leads to underestimation of cyclone mean depth and deep cyclone frequency in the Arctic. In general, the regional climate models are able to represent the spatial distribution of cyclone characteristics in the Arctic but models that employ large‐scale spectral nudging show a better agreement with ERA‐Interim reanalysis than the rest of the models. Trends also exhibit the benefits of nudging. Models with spectral nudging are able to reproduce the cyclone trends, whereas most of the nonnudged models fail to do so. However, the cyclone characteristics and trends are sensitive to the choice of nudged variables.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-08
    Description: Changes in the characteristics of cyclone activity (frequency, depth and size) in the Arctic are analyzed based on simulations with state-of-the-art regional climate models (RCMs) from the Arctic-CORDEX initiative and global climate models (GCMs) from CMIP5 under the Representative Concentration Pathway (RCP) 8.5 scenario. Most of RCMs show an increase of cyclone frequency in winter (DJF) and a decrease in summer (JJA) to the end of the 21st century. However, in one half of the RCMs, cyclones become weaker and substantially smaller in winter and deeper and larger in summer. RCMs as well as GCMs show an increase of cyclone frequency over the Baffin Bay, Barents Sea, north of Greenland, Canadian Archipelago, and a decrease over the Nordic Seas, Kara and Beaufort Seas and over the sub-arctic continental regions in winter. In summer, the models simulate an increase of cyclone frequency over the Central Arctic and Greenland Sea and a decrease over the Norwegian and Kara Seas by the end of the 21st century. The decrease is also found over the high-latitude continental areas, in particular, over east Siberia and Alaska. The sensitivity of the RCMs' projections to the boundary conditions and model physics is estimated. In general, different lateral boundary conditions from the GCMs have larger effects on the simulated RCM projections than the differences in RCMs' setup and/or physics.
    Type: Article , PeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-27
    Description: It is often unclear how to optimally choose horizontal resolution for the oceanic and atmospheric components of coupled climate models, which has implications for their ability to make best use of available computational resources. Here we investigate the effect of using different combinations of horizontal resolutions in atmosphere and ocean on the simulated climate in a global coupled climate model (Alfred Wegener Institute Climate Model [AWI‐CM]). Particular attention is given to the Atlantic Meridional Overturning Circulation (AMOC). Four experiments with different combinations of relatively high and low resolutions in the ocean and atmosphere are conducted. We show that increases in atmospheric and oceanic resolution have clear impacts on the simulated AMOC, which are largely independent. Increased atmospheric resolution leads to a weaker AMOC. It also improves the simulated Gulf Stream separation; however, this is only the case if the ocean is locally eddy resolving and reacts to the improved atmosphere. We argue that our results can be explained by reduced mean winds caused by higher cyclone activity. Increased resolution of the ocean affects the AMOC in several ways, thereby locally increasing or reducing the AMOC. The finer topography (and reduced dissipation) in the vicinity of the Caribbean basin tends to locally increase the AMOC. However, there is a reduction in the AMOC around 45°N, which relates to the reduced mixed layer depth in the Labrador Sea in simulations with refined ocean and changes in the North Atlantic current pathway. Furthermore, the eddy‐induced changes in the Southern Ocean increase the strength of the deep cell.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Geoscientific Model Development, Copernicus Publications, 12(7), pp. 2635-2656, ISSN: 1991-9603
    Publication Date: 2019-08-19
    Description: Models from phase 5 of the Coupled Model Inter-comparison Project (CMIP5) show substantial biases in the deep ocean that are larger than the level of natural variability and the response to enhanced greenhouse gas concentrations. Here, we analyze the influence of horizontal resolution in a hierarchy of five multi-resolution simulations with the AWI Climate Model (AWI-CM), the climate model used at the Al-fred Wegener Institute, Helmholtz Centre for Polar and Ma-rine Research, which employs a sea ice–ocean model com-ponent formulated on unstructured meshes. The ocean grid sizes considered range from a nominal resolution of ∼ 1◦ (CMIP5 type) up to locally eddy resolving. We show that increasing ocean resolution locally to resolve ocean eddies leads to reductions in deep ocean biases, although these im-provements are not strictly monotonic for the five different ocean grids. A detailed diagnosis of the simulations allows to identify the origins of the biases. We find that two key re-gions at the surface are responsible for the development of the deep bias in the Atlantic Ocean: the northeastern North Atlantic and the region adjacent to the Strait of Gibraltar. Furthermore, the Southern Ocean density structure is equally improved with locally explicitly resolved eddies compared to parameterized eddies. Part of the bias reduction can be traced back towards improved surface biases over outcrop-ping regions, which are in contact with deeper ocean layers along isopycnal surfaces. Our prototype simulations provide guidance for the optimal choice of ocean grids for AWI-CM to be used in the final runs for phase 6 of CMIP (CMIP6) and for the related flagship simulations in the High Resolution Model Intercomparison Project (HighResMIP). Quite remarkably, retaining resolution only in areas of high eddy activity along with excellent scalability characteristics of the unstructured-mesh sea ice–ocean model enables us to per-form the multi-centennial climate simulations needed in a CMIP context at (locally) eddy-resolving resolution with a throughput of 5–6 simulated years per day.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-12-14
    Description: We discuss the performance of the Finite Element Ocean Model (FESOM) on locally eddy-resolving global unstructured meshes. In particular, the utility of the mesh design approach whereby mesh horizontal resolution is varied as half the Rossby radius in most of the model domain is explored. Model simulations on such a mesh (FESOM-XR) are compared with FESOM simulations on a smaller-size mesh, where refinement depends only on the pattern of observed variability (FESOM-HR). We also compare FESOM results to a simulation of the ocean model of the Max Planck Institute for Meteorology (MPIOM) on a tripolar regular grid with refinement toward the poles, which uses a number of degrees of freedom similar to FESOM-XR. The mesh design strategy, which relies on the Rossby radius and/or the observed variability pattern, tends to coarsen the resolution in tropical and partly subtropical latitudes compared to the regular MPIOM grid. Excessive variations of mesh resolution are found to affect the performance in other nearby areas, presumably through dissipation that increases if resolution is coarsened. The largest improvement shown by FESOM-XR is a reduction of the surface temperature bias in the so-called North-West corner of the North Atlantic Ocean where horizontal resolution was increased dramatically. However, other biases in FESOM-XR remain largely unchanged compared to FESOM-HR. We conclude that resolving the Rossby radius alone (with two points per Rossby radius) is insufficient, and that careful use of a priori information on eddy dynamics is required to exploit the full potential of ocean models on unstructured meshes.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-08-27
    Description: The climate in Mexico and Central America is influenced by the Pacific and the Atlantic oceanic basins and atmospheric conditions over continental North and South America. These factors and important ocean–atmosphere coupled processes make the region’s climate a great challenge for global and regional climate modeling. We explore the benefits that coupled regional climate models may introduce in the representation of the regional climate with a set of coupled and uncoupled simulations forced by reanalysis and global model data. Uncoupled simulations tend to stay close to the large-scale patterns of the driving fields, particularly over the ocean, while over land they are modified by the regional atmospheric model physics and the improved orography representation. The regional coupled model adds to the reanalysis forcing the air–sea interaction, which is also better resolved than in the global model. Simulated fields are modified over the ocean, improving the representation of the key regional structures such as the Intertropical Convergence Zone and the Caribbean Low Level Jet. Higher resolution leads to improvements over land and in regions of intense air–sea interaction, e.g., off the coast of California. The coupled downscaling improves the representation of the Mid Summer Drought and the meridional rainfall distribution in southernmost Central America. Over the regions of humid climate, the coupling corrects the wet bias of the uncoupled runs and alleviates the dry bias of the driving model, yielding a rainfall seasonal cycle similar to that in the reanalysis-driven experiments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Geophysical Union
    In:  EPIC3Journal of Geophysical Research: Oceans, American Geophysical Union, ISSN: 2169-9275
    Publication Date: 2018-09-20
    Description: Gradually decaying Arctic sea ice changes the boundary conditions at the surface, separating ocean and atmosphere. In recent years, substantial reductions in sea ice during winter have been observed in the Atlantic sector of the Arctic Ocean, which forms the gateway for warm water inflow from the midlatitudes. In this study, we used routine output from the Mercator Ocean global operational system (MOGOS) to assess the efficiency of winter thermohaline convection transporting heat from deep layers to the ocean surface along the Atlantic origin water (AW) pathway, between Svalbard and Franz Joseph Land in the Nansen Basin. Positive temperature extremes in the AW layer in midwinter promote favorable prerequisite conditions for deep‐reaching thermohaline convection, with explicit signs captured by the MOGOS. Balance equations with several assumptions for the compact region around the position (81.30°N, 31°E) of the long‐term (2004–2010) mooring demonstrated that winter heat loss at the ocean surface is mainly compensated by convective heat flux from the AW layer. Heat and salt fluxes, associated with horizontal advection, are compatible with convective fluxes, while contribution of ice formation/melt is substantially smaller. Conclusion about the dominant role of vertical convection in shaping thermohaline structure and reducing sea ice in winter is supported by correlation analysis of the MOGOS output and mooring‐based measurements. Unfavorable background conditions (thick and consolidated sea ice in combination with specific directions of ice drift) may significantly alter convection development, as demonstrated for two sequential years with substantially different external forcing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-09-19
    Description: The key role of the South Atlantic Anticyclone (SAA) on the seasonal cycle of the tropical Atlantic is investigated with a regionally coupled atmosphere–ocean model for two different coupled domains. Both domains include the equatorial Atlantic and a large portion of the northern tropical Atlantic, but one extends southward, and the other northwestward. The SAA is simulated as internal model variability in the former, and is prescribed as external forcing in the latter. In the first case, the model shows significant warm biases in sea surface temperature (SST) in the Angola-Benguela front zone. If the SAA is externally prescribed, these biases are substantially reduced. The biases are both of oceanic and atmospheric origin, and are influenced by ocean–atmosphere interactions in coupled runs. The strong SST austral summer biases are associated with a weaker SAA, which weakens the winds over the southeastern tropical Atlantic, deepens the thermocline and prevents the local coastal upwelling of colder water. The biases in the basins interior in this season could be related to the advection and eddy transport of the coastal warm anomalies. In winter, the deeper thermocline and atmospheric fluxes are probably the main biases sources. Biases in incoming solar radiation and thus cloudiness seem to be a secondary effect only observed in austral winter. We conclude that the external prescription of the SAA south of 20°S improves the simulation of the seasonal cycle over the tropical Atlantic, revealing the fundamental role of this anticyclone in shaping the climate over this region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-01-22
    Description: The Hengduan Mountains and Tibetan Plateau possess unique topographical characteristics that serve as an effective blocking of the movement of the westerly wind in the middle and lower troposphere towards East China. This study examines results from a regional climate model (REMO) at the resolutions of 25 and 50 km for the period 1980–2012. The model is run using lateral boundary conditions from ERA-Interim (European Centre for Medium-Range Weather Forecasts interim reanalysis). There are only a few differences between 25 and 50 km in land surface/vegetation characteristics, but the major differences in this region are due to the orography. Results show that the high-resolution simulation performance is poor in winter, when southwesterly wind prevails, whereas it performs well in summer, when the westerly wind is substantially weakened in southern China. In comparison to the ERA-Interim wind field, the high-resolution simulation overestimates the air flow over the Hengduan Mountains near the ground surface, which influences the transport of atmospheric water vapor in the downstream region, i.e., over southern China. Specifically, with the help of the overestimated southwesterly wind, the amount of atmospheric water vapor transported increases considerably perennially by up to 20% in southern China, while it decreases remarkably by more than 5% throughout the year in a large area of Central and North China. These features lead to excessive precipitation and underestimated cloud cover in southern China, which probably causes the overestimated 2-m temperature in southern China. Our study emphasizes that, in such high-resolution-model studies for East Asia, special attention should be paid to the near-surface winds over the Hengduan Mountains.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-16
    Description: Changes in the characteristics of cyclone activity (frequency, depth and size) in the Arctic are analyzed based on simulations with state-of-the-art regional climate models (RCMs) from the Arctic-CORDEX initiative and global climate models (GCMs) from CMIP5 under the Representative Concentration Pathway (RCP) 8.5 scenario. Most of RCMs show an increase of cyclone frequency in winter (DJF) and a decrease in summer (JJA) to the end of the 21st century. However, in one half of the RCMs, cyclones become weaker and substantially smaller in winter and deeper and larger in summer. RCMs as well as GCMs show an increase of cyclone frequency over the Baffin Bay, Barents Sea, north of Greenland, Canadian Archipelago, and a decrease over the Nordic Seas, Kara and Beaufort Seas and over the sub-arctic continental regions in winter. In summer, the models simulate an increase of cyclone frequency over the Central Arctic and Greenland Sea and a decrease over the Norwegian and Kara Seas by the end of the 21st century. The decrease is also found over the high-latitude continental areas, in particular, over east Siberia and Alaska. The sensitivity of the RCMs' projections to the boundary conditions and model physics is estimated. In general, different lateral boundary conditions from the GCMs have larger effects on the simulated RCM projections than the differences in RCMs' setup and/or physics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...