GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (59)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2024-04-03
    Description: Sediment fluxes to the seafloor govern the fate of elements and compounds in the ocean and serve as a prerequisite for research on elemental cycling, benthic processes and sediment management strategies. To quantify these fluxes over seafloor areas, it is necessary to scale up sediment mass accumulation rates (MAR) obtained from multiple sample stations. Conventional methods for spatial upscaling involve averaging of data or spatial interpolation. However, these approaches may not be sufficiently precise to account for spatial variations of MAR, leading to poorly constrained regional sediment budgets. Here, we utilize a machine learning approach to scale up porosity and 210 Pb data from 145 and 65 stations, respectively, in the Skagerrak. The models predict the spatial distributions by considering several predictor variables that are assumed to control porosity and 210 Pb rain rates. The spatial distribution of MAR is based on the predicted porosity and existing sedimentation rate data. Our findings reveal highest MAR and 210 Pb rain rates to occur in two parallel belt structures that align with the general circulation pattern in the Skagerrak. While high 210 Pb rain rates occur in intermediate water depths, the belt of high MAR is situated closer to the coastlines due to lower porosities at shallow water depths. Based on the spatial distributions, we calculate a total MAR of 34.7 Mt yr -1 and a 210 Pb rain rate of 4.7 · 10 14 dpm yr -1 . By comparing atmospheric to total 210 Pb rain rates, we further estimate that 24% of the 210 Pb originates from the local atmospheric input, with the remaining 76% being transported laterally into the Skagerrak. The updated MAR in the Skagerrak is combined with literature data on other major sediment sources and sinks to present a tentative sediment budget for the North Sea, which reveals an imbalance with sediment outputs exceeding the inputs. Substantial uncertainties in the revised Skagerrak MAR and the literature data might close this imbalance. However, we further hypothesize that previous estimates of suspended sediment inputs into the North Sea might have been underestimated, considering recently revised and elevated estimates on coastal erosion rates in the surrounding region of the North Sea.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Wissenschaftliche Auswertungen
    Publication Date: 2024-02-26
    Type: Book chapter , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-29
    Description: Highlights • The developed joint inversion quantifies both free gas and hydrate concentration. • The robust method uses sonic and conductivity logs as main input parameters. • For the test site it reveals two hydrate accumulations with very different characteristics. • The whole range of concentrations is shown that can explain the observed data. • The method is applicable to most continental margins when there is borehole control. Abstract Quantification of gas hydrates in marine sediments is crucial for understanding gas hydrate systems. By empirical relationships or effective medium modelling, gas hydrate concentrations can be derived from velocity and/or conductivity logs. However, these approaches do not take the co-occurrence of free gas and gas hydrate into account leading to large uncertainties in the calculated free gas and gas hydrate concentrations. To overcome this issue we adopt a joint elastic and electric self-consistent/differential effective medium model as the basis for a new joint inversion scheme that distinguishes between both phases. We apply this scheme to p-wave velocity and electric induction data measured by downhole-logging of boreholes at Formosa Ridge off Taiwan - a known hydrate province with an active gas conduit. Gaussian Mixture Modeling separates the background signal of the host medium from anomalies and allows to determine a background porosity as a probability density function of depth. We use this derived porosity to jointly invert electrical conductivity and velocity data for hydrate and free gas concentrations. At Formosa Ridge, we find two resistive anomalies, one in the shallow and another in the deep part of the borehole. Only the deep anomaly in conductivity coincides with a high-velocity anomaly. This is consistent with ∼30% hydrate with ∼1% free gas concentration. For the shallow anomaly, increased velocities due to hydrate concentrations of ∼15% are compensated by a decrease in velocity due to ∼1% of free gas. The method reconciles the different sensitivities of the two data types and yields hydrate and free gas concentrations that are largely consistent with geochemically derived values.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-28
    Description: Recent studies have begun to explore the potential of enhanced benthic weathering (EBW) in the Baltic Sea as a measure for climate change mitigation. To augment the understanding of EBW under seasonally changing conditions, this study aims to investigate weathering processes under anoxia to hypoxia in corrosive bottom waters, which reflect late summer conditions in the Baltic Sea. Dunite and calcite were added to sediment cores retrieved from Eckernförde Bay (Western Baltic Sea) with a constant flow-through of deoxygenated, CO 2 -enriched Baltic Sea bottom water. The addition of both materials increased benthic alkalinity release by 2.94 μmol cm −2 d −1 (calcite) and 1.12 μmol cm −2 d −1 (dunite), compared to the unamended control experiment. These excess fluxes are significantly higher than those obtained under winter conditions. The comparison with bottom water oxygen concentrations emphasizes that highest fluxes of alkalinity were associated with anoxic phases of the experiment. An increase in Ca and Si fluxes showed that the enhanced alkalinity fluxes could be attributed to calcite and dunite weathering. First order rate constants calculated based on these data were close to rates published in previous studies conducted under different conditions. This highlights the suitability of these proxies for mineral dissolution and justifies the use of these rate constants in modeling studies investigating EBW in the Baltic Sea and areas with similar chemical conditions. Generally stable pH profiles over the course of the experiment, together with the fact that the added minerals remained on the sediment surface, suggest that corrosive bottom waters were the main driving factor for the dissolution of the added minerals. These factors have important implications for the choice of mineral and timing for EBW as a possible marine carbon dioxide removal method in seasonally hypoxic to anoxic regions of the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-09
    Description: The eastern tropical South Pacific (ETSP) represents one of the most productive areas in the ocean that is characterized by a pronounced oxygen minimum zone (OMZ). Particulate organic matter (POM) that sinks out of the euphotic zone is supplied to the anoxic sediments and utilized by microbial communities. The degradation of POM is associated with dissolved organic matter (DOM) production and reworking. The release of recalcitrant DOM to the overlying waters may represent an important organic matter escape mechanism from remineralization within sediments but received little attention in OMZ regions so far. Here, we combine measurements of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) with DOM optical properties in the form of chromophoric (CDOM) and fluorescent (FDOM) DOM from pore waters and near-bottom waters of the ETSP off Peru. We evaluate diffusion–driven fluxes and net in situ fluxes of DOC and DON in order to investigate processes affecting DOM cycling at the sediment–water interface along a transect 12° S. To our knowledge, these are the first data for sediment release of DON and pore water CDOM and FDOM for the ETSP off Peru. Pore-water DOC and DON accumulated with increasing sediment depth, suggesting an imbalance between DOM production and remineralization within sediments. High DON accumulation resulted in very low pore water DOC / DON ratios (〉 1) which could be caused by either an "imbalance" in DOC and DON remineralization, or to the presence of an additional nitrogen source. Diffusion driven fluxes of DOC and DON exhibited high spatial variability. They varied from 0.2–0.1 mmol m−2 d−1 to 2.52–1.3 mmol m−2 d−1 and from −0.042–0.02 mmol m−2 d−1 to 3.32–1.7 mmol m−2 d−1, respectively. Generally low net in situ DOC and DON fluxes as well as steepening of spectral slope (S) of CDOM and accumulation of humic-like FDOM at the near-bottom waters over time indicated active microbial DOM utilization at the sediment–water interface, potentially stimulated by nitrate (NO3−) and nitrite (NO2−). The microbial DOC utilization rates, estimated in our study, may be sufficient to support denitrification rates of 0.2–1.4 mmol m−2 d−1, suggesting that sediment release of DOM contributes substantially to nitrogen loss processes in the ETSP off Peru.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: We emphasize the importance of marine silicate weathering (MSiW) reactions in anoxic sediment as fundamental in generating alkalinity and cations needed for carbonate precipitation and preservation along continental margins. We use a model that couples thermodynamics with aqueous geochemistry to show that the CO2 released during methanogenesis results in a drop in pH to 6.0; unless these protons are buffered by MSiW, carbonate minerals will dissolve. We present data from two regions: the India passive margin and the active subduction zone off Japan, where ash and/or rivers supply the reactive silicate phase, as reflected in strontium isotope data. Offshore India and Korea, alteration of continent-derived silicates results in pore water enriched in radiogenic 87Sr, with 87Sr/86Sr ratios as high as 0.7095 and 0.7104, respectively. Off Japan, strontium in pore water influenced by ash alteration is depleted in 87Sr, with 87Sr/86Sr as low as 0.7065. Carbonate minerals formed by alkalinity and cations generated through MSiW carry these strontium isotopic signals, and are typically dolomite, siderite, and Fe-rich calcite. These contrast with the aragonite and high-magnesium calcite that form during anaerobic oxidation of methane and incorporate the coeval seawater 87Sr/86Sr signal. We show that MSiW is necessary for authigenic carbonate formation and preservation along continental margins, which remove carbon from Earth's surface at rates previously estimated to be at least 1012 mol yr−1. In addition, these authigenic carbonates are of relevance to studies of the deep biosphere, fluid flow, seismogenesis, slope stability, and reservoir characteristics.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Highlights • Physical properties obtained from core and log data at the Danube deep sea fan are reported. • Core-log-seismic integration defines stratigraphic framework at the S2 channel. • All data suggest no gas hydrate is present at drill sites within uncertainties of methods employed. Abstract Drilling, coring, and geophysical logging were performed with the MARUM-MeBo200 seafloor drilling rig to investigate gas hydrate occurrences of the Danube deep sea fan, off Romania, Black Sea. Three sites within a channel-levee complex were investigated. Geophysical log data of P-wave velocity, electrical resistivity, and spectral gamma ray are combined with core-derived physical properties of porosity, magnetic susceptibility, and bulk density. Core- and log physical property data are used to define a time-depth conversion by synthetic seismogram modeling, which is then used to interpret the seismic data. Individual polarity reversed reflectors within the stratigraphic column drilled are linked to reduction in P-wave velocity and bulk density. Those reflectors (and associated reflection packages) are accompanied by distinct and systematic changes in sediment porosity, magnetic susceptibility, and electrical resistivity. Overall, the sediments at drill site GeoB22605 (MeBo-17) represent the younger (upper) levee sequence of the channel, that has been eroded at drill site GeoB22603 (MeBo-16). Splicing seismic data across the channel from the East (MeBo-16) to the West (MeBo-17) demonstrates the continuation of reflectors underneath the channel. The upper ∼50 m below seafloor (mbsf) at site MeBo-16 do not stratigraphically belong to the same sequence of the (deeper) levee-deposits. Above the marked erosional unconformity, sediments at Site MeBo-16 are likely derived by a mixture of repeated slump-events (identified as seismically transparent units) interbedded with hemi-pelagic sedimentation. Similarly, sediments within the upper ∼20 mbsf at Site MeBo-17 are not stratigraphically the same levee-deposits, but are derived by a mixture of slump-events (also seen in the marked seafloor amphitheatre architecture of a large failure complex extending further upslope) and hemi-pelagic sedimentation. All observations combined show that the seismically observed stratigraphic pattern represents a reflectivity sequence mostly driven by variations in density (porosity) and correspondingly by changes in P-wave velocity and electrical resistivity. All observations from the geophysical log- and core, as well as geochemical data do show no evidence for the presence of any significant gas hydrates within the drilled/cored sequences.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: Benthic fluxes of dissolved silica (Si) from sediments into the water column are driven by the dissolution of biogenic silica (bSiO2) and terrigenous Si minerals and modulated by the precipitation of authigenic Si phases. Each of these processes has a specific effect on the isotopic composition of silica dissolved in sediment pore waters such that the determination of pore water δ30Si values can help to decipher the complex Si cycle in surface sediments. In this study, the δ30Si signatures of pore fluids and bSiO2 in the Guaymas Basin (Gulf of California) were analyzed, which is characterized by high bSiO2 accumulation and hydrothermal activity. The δ30Si signatures were investigated in the deep basin, in the vicinity of a hydrothermal vent field, and at an anoxic site located within the pronounced oxygen minimum zone (OMZ). The pore fluid δ30Sipf signatures differ significantly depending on the ambient conditions. Within the basin, δ30Sipf is essentially uniform averaging +1.2 ± 0.1 ‰ (1SD). Pore fluid δ30Sipf values from within the OMZ are significantly lower (0.0 ± 0.5 ‰, 1SD), while pore fluids close to the hydrothermal vent field are higher (+2.0 ± 0.2 ‰, 1SD). Reactive transport modelling results show that the δ30Sipf is mainly controlled by silica dissolution (bSiO2 and terrigenous phases) and Si precipitation (authigenic aluminosilicates). Precipitation processes cause a shift to high pore fluid δ30Sipf signatures, most pronounced at the hydrothermal site. Within the OMZ however, additional dissolution of isotopically depleted Si minerals (e.g. clays) facilitated by high mass accumulation rates of terrigenous material (MARterr) is required to promote the low δ30Sipf signatures while precipitation of authigenic aluminosilicates seems to be hampered by high water / rock ratios. Guaymas OMZ δ30Sipf values are markedly different from those of the Peruvian OMZ, the only other marine setting where Si isotopes have been investigated to constrain early diagenetic processes. These differences highlight the fact that δ30Sipf signals in OMZs worldwide are not alike and each setting can result in a range of δ30Sipf values as a function of the environmental conditions. We conclude that the benthic silica cycle is more complex than previously thought and that additional Si isotope studies are needed to decipher the controls on Si turnover in marine sediment and the role of sediments in the marine silica cycle.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Highlights • The SUGAR project has developed and tested various methods for gas production from marine gas hydrates from micro to field scale. • Numerical simulations improved the understanding of processes on molecular to reservoir scale. • Depressurization is a promising technology for exploiting gas hydrate deposits in the Danube Delta. • The injection of CO2 or CO2–N2 is not a suitable method for the exploitation of gas hydrate deposits in the Danube Delta. Abstract One important scientific objective of the national research project SUGAR – Submarine Gas Hydrate Reservoirs was the development, improvement, and test of innovative concepts for the production of methane from natural gas hydrate reservoirs. Therefore, different production methods, such as the thermal stimulation using in situ combustion, the chemical stimulation via injection of CO2 as a gaseous, liquid or supercritical phase and depressurization were tested alone or in combination at different scales. In the laboratory experiments these ranged from pore and hydrate grain scale to 425-L reactor volume, whereas numerical models were applied to describe the related processes from molecular to reservoir scale. In addition, the numerical simulations also evaluated the feasibility and efficiency of the application of these methods in selected areas, such as the Danube Paleodelta in the Black Sea, addressing the two dominant methane hydrate reservoir settings, buried channel-levee and turbidite systems. It turned out, that the injection of CO2 or a CO2–N2 gas mixture is not applicable for the Danube Paleodelta in the Black Sea, because the local pressure and temperature conditions are too close to the equilibrium conditions of both, the CO2 hydrate and a CO2–N2 mixed hydrate stability fields. Experiments using thermal stimulation and depressurization showed promising results but also some issues, such as sufficient heat transfer. In summary it can be said that the applicability and efficiency of each method has to be proven for each specific hydrate reservoir conditions. Based on the results obtained by numerical simulations the most promising and safe method for the production of CH4 from hydrate bearing sediments in the Danube Paleodelta would be the depressurization technique. This study summarizes the main experimental and modeling results.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-02-08
    Description: Highlights • Overview on geochemical composition of pore water and solid phase of sediments on the Azores Plateau. • Evidence for deep marine hydrothermal activity on the Azores Plateau. • Pore water data suggest ongoing anaerobic oxidation of methane and carbonate recrystallization. The Azores Plateau is an active magmatic region in the Central North Atlantic Ocean. In this study, we present a comprehensive data set of major element compositions and 87Sr/86Sr ratios of pore waters from surface sediments (0–9 mbsf) of the Azores Plateau. Based on distinct geochemical signatures we can separate normal marine from hydrothermally affected sediments. Normal marine sediments can further be differentiated by their ash content. Pore waters of ash rich gravity cores (GCs) do not show any deviations from seawater values except of a minor increase in Sr. In contrast, ash poor GCs generally show a trend for decreasing Ca with increasing depth, accompanied by a minor SO4 decrease and a more pronounced Sr increase. We suggest that these deviations are caused by processes such as anaerobic oxidation of methane and carbonate recrystallization. At four additional sample locations we observed a decrease in Mg and SO4 accompanied by a Ca increase in the pore waters, a pattern typical for hydrothermal fluids. The existence of hydrothermal systems in this region are corroborated by multi-channel seismic data, suggesting that sill or dyke intrusions are present in the subsurface close to the core locations. Overall, our observations offer preliminary indications for the existence of submarine hydrothermal systems on the Azores Plateau away from the Mid- Atlantic Ridge.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...