GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (89)
Keywords
Language
Years
Year
  • 1
    Keywords: Forschungsbericht ; Pazifischer Ozean Nord ; Paläoklima
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (50 Seiten, 11,20 MB) , Diagramme
    Language: German
    Note: Förderkennzeichen BMBF 03F0785A
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Bremerhaven : Alfred-Wegener-Institut (AWI) Helmholtz-Zentrum für Polar- und Meeresforschung
    Keywords: Forschungsbericht ; Pleistozän ; Paläoklima ; Modell ; Simulation ; Meer ; Kohlenstoffkreislauf
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (15 Seiten, 223,21 KB)
    Language: German , English
    Note: Förderkennzeichen BMBF 01LP1504A-D , Verbundnummer 01162215 , Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden , Literaturangaben , Sprache der Kurzfassungen: Deutsch, Englisch
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-04
    Description: Highlights: • Temperature anomalies for the Mid-Holocene compared to preindustrial are significantly different in the low- and high-resolution versions of the atmospheric model ECHAM5 • For summer, shortwave cloud radiative forcing emerges as an important factor. • For boreal winter, differences are mainly related to circulation changes. • Anomaly differences are regionally as large as the mid-Holocene minus preindustrial temperature signals. Abstract: This study evaluates the dependence of simulated surface air temperatures on model resolution and orography for the mid-Holocene. Sensitivity experiments with the atmospheric general circulation model ECHAM5 are performed with low (∼3.75°, 19 vertical levels) and high (∼1.1°, 31 vertical levels) resolution. Results are compared to the respective preindustrial runs. It is found that the large-scale temperature anomalies for the mid-Holocene (compared to preindustrial) are significantly different in the low- and high-resolution versions. For boreal winter, differences are mainly related to circulation changes caused by the response to thermal forcing in conjunction with orographic resolution. For summer, shortwave cloud radiative forcing emerges as an important factor. The anomaly differences (low minus high resolution version) in the Northern Hemisphere are regionally as large as the anomalous mid-Holocene temperature signals. Furthermore, they depend on the applied surface boundary conditions. We conclude that the resolution matters for the Northern Hemisphere response in mid-Holocene simulations, which should be taken into account in model-model and data-model comparisons.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Rapid monsoon changes since the last deglaciation remain poorly constrained due to the scarcity of geological archives. Here we present a high-resolution scanning X-ray fluorescence (XRF) analysis of a 13.5 m terrace succession on the western Chinese Loess Plateau (CLP) to infer rapid monsoon changes since the last deglaciation. Our results indicate that Rb∕Sr and Zr∕Rb are sensitive indicators of chemical weathering and wind sorting, respectively, which are further linked to the strength of the East Asian summer monsoon (EASM) and the East Asian winter monsoon (EAWM). During the last deglaciation, two cold intervals of the Heinrich event 1 and Younger Dryas were characterized by intensified winter monsoon and weakened summer monsoon. The EAWM gradually weakened at the beginning of the Holocene, while the EASM remained steady till 9.9 ka and then grew stronger. Both the EASM and EAWM intensities were relatively weak during the Middle Holocene, indicating a mid-Holocene climatic optimum. Rb∕Sr and Zr∕Rb exhibit an antiphase relationship between the summer and winter monsoon changes on a centennial timescale during 16–1 ka. Comparison of these monsoon changes with solar activity and North Atlantic cooling events reveals that both factors can lead to abrupt changes on a centennial timescale in the Early Holocene. During the Late Holocene, North Atlantic cooling became the major forcing of centennial monsoon events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: The earliest part of the Holocene, from 11.5k to 7k (k = 1000 years before present), is a critical transition period between the relatively cold last deglaciation and the warm middle Holocene. It is marked by more pronounced seasonality and reduced greenhouse gases (GHGs) than the present state, as well as by the presence of the Laurentide Ice Sheet (LIS) and glacial meltwater perturbation. This paper performs experiments under pre-industrial and different early-Holocene regimes with AWI-ESM (Alfred Wegener Institute–Earth System Model), a state-of-the-art climate model with unstructured mesh and varying resolutions, to examine the sensitivity of the simulated Atlantic meridional overturning circulation (AMOC) to early-Holocene insolation, GHGs, topography (including properties of the ice sheet), and glacial meltwater perturbation. In the experiments with early-Holocene Earth orbital parameters and GHGs applied, the AWI-ESM simulation shows a JJA (June–July–August) warming and DJF (December–January–February) cooling over the mid and high latitudes compared with pre-industrial conditions, with amplification over the continents. The presence of the LIS leads to an additional regional cooling over the North America. We also simulate the meltwater event around 8.2k. Big discrepancies are found in the oceanic responses to different locations and magnitudes of freshwater discharge. Our experiments, which compare the effects of freshwater release evenly across the Labrador Sea to a more precise injection along the western boundary of the North Atlantic (the coastal region of LIS), show significant differences in the ocean circulation response, as the former produces a major decline of the AMOC and the latter yields no obvious effect on the strength of the thermohaline circulation. Furthermore, proglacial drainage of Lakes Agassiz and Ojibway leads to a fast spin-down of the AMOC, followed, however, by a gradual recovery. Most hosing experiments lead to a warming over the Nordic Sea and Barents Sea of varying magnitudes, because of an enhanced inflow from lower latitudes and a northward displacement of the North Atlantic deep convection. These processes exist in both of our high- and low-resolution experiments, but with some local discrepancies such as (1) the hosing-induced subpolar warming is much less pronounced in the high-resolution simulations; (2) LIS coastal melting in the high-resolution model leads to a slight decrease in the AMOC; and (3) the convection formation site in the low- and high-resolution experiments differs, in the former mainly over northeastern North Atlantic Ocean, but in the latter over a very shallow subpolar region along the northern edge of the North Atlantic Ocean. In conclusion, we find that our simulations capture spatially heterogeneous responses of the early-Holocene climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: In this paper we introduce a Bayesian framework, which is explicit about prior assumptions, for using model ensembles and observations together to constrain future climate change. The emergent constraint approach has seen broad application in recent years, including studies constraining the equilibrium climate sensitivity (ECS) using the Last Glacial Maximum (LGM) and the mid-Pliocene Warm Period (mPWP). Most of these studies were based on ordinary least squares (OLS) fits between a variable of the climate state, such as tropical temperature, and climate sensitivity. Using our Bayesian method, and considering the LGM and mPWP separately, we obtain values of ECS of 2.7 K (0.6–5.2, 5th–95th percentiles) using the PMIP2, PMIP3, and PMIP4 datasets for the LGM and 2.3 K (0.5–4.4) with the PlioMIP1 and PlioMIP2 datasets for the mPWP. Restricting the ensembles to include only the most recent version of each model, we obtain 2.7 K (0.7–5.2) using the LGM and 2.3 K (0.4–4.5) using the mPWP. An advantage of the Bayesian framework is that it is possible to combine the two periods assuming they are independent, whereby we obtain a tighter constraint of 2.5 K (0.8–4.0) using the restricted ensemble. We have explored the sensitivity to our assumptions in the method, including considering structural uncertainty, and in the choice of models, and this leads to 95 % probability of climate sensitivity mostly below 5 K and only exceeding 6 K in a single and most uncertain case assuming a large structural uncertainty. The approach is compared with other approaches based on OLS, a Kalman filter method, and an alternative Bayesian method. An interesting implication of this work is that OLS-based emergent constraints on ECS generate tighter uncertainty estimates, in particular at the lower end, an artefact due to a flatter regression line in the case of lack of correlation. Although some fundamental challenges related to the use of emergent constraints remain, this paper provides a step towards a better foundation for their potential use in future probabilistic estimations of climate sensitivity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: The past provides evidence of abrupt climate shifts and changes in the frequency of climate and weather extremes. We explore the non‐linear response to orbital forcing and then consider climate millennial variability down to daily weather events. Orbital changes are translated into regional responses in temperature, where the precessional response is related to nonlinearities and seasonal biases in the system. We question regularities found in climate events by analyzing the distribution of inter‐event waiting times. Periodicities of about 900 and 1150 years are found in ice cores besides the prominent 1500‐years cycle. However, the variability remains indistinguishable from a random process, suggesting that centennial‐to‐millennial variability is stochastic in nature. New numerical techniques are developed allowing for a high resolution in the dynamically relevant regions like coasts, major upwelling regions, and high latitudes. Using this model, we find a strong sensitivity of the Atlantic meridional overturning circulation depending on where the deglacial meltwater is injected into. Meltwater into the Mississippi and near Labrador hardly affect the large‐scale ocean circulation, whereas subpolar hosing mimicking icebergs yields a quasi shutdown. The same multi‐scale approach is applied to radiocarbon simulations enabling a dynamical interpretation of marine sediment cores. Finally, abrupt climate events also have counterparts in the recent climate records, revealing a close link between climate variability, the statistics of North Atlantic weather patterns, and extreme events.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-02-08
    Description: A compilation of the published literature on dust content in terrestrial and marine sediment cores was synchronized with pollen data and speleothem growth phases on the Greenland Ice Core Chronology 2005 (GICC05) time axis. Aridity patterns for eight key areas of the global climate system have been reconstructed for the last 60 000 years. These records have different time resolutions and different dating methods, i.e. different types of stratigraphy. Nevertheless, all regions analysed in this study show humid conditions during early Marine Isotope Stage 3 (MIS3) and the early Holocene or deglaciation, but not always at the same time. Such discrepancies have been interpreted as regional effects, although stratigraphic uncertainties may affect some of the proposed interpretations. In comparison, most of the MIS2 interval becomes arid in all of the Northern Hemisphere records, but the peak arid conditions of the Last Glacial Maximum (LGM) and Heinrich event 1 differ in duration and intensity among regions. In addition, we also compare the aridity synthesis with modelling results using a global climate model (GCM). Indeed, geological archives and GCMs show agreement on the aridity pattern for the Holocene or deglaciation, for the LGM and for late MIS3.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-02-08
    Description: Along the margins of continental ice sheets, lakes formed in isostatically depressed basins duringglacial retreat. Their shorelines and extent are sensitive to the ice margin and the glacial history of the region.Proglacial lakes, in turn, also impact the glacial isostatic adjustment due to loading, and ice dynamics by posing amarine‐like boundary condition at the ice margin. In this study we present a tool that efficiently identifies lake basinsand the corresponding maximum water level for a given ice sheet and topography reconstruction. This algorithm,called the LakeCC model, iteratively checks the whole map for a set of increasing water levels and fills isolated basinsuntil they overflow into the ocean. We apply it to the present‐day Great Lakes and the results show good agreement(∼1−4%) with measured lake volume and depth. We then apply it to two topography reconstructions of NorthAmerica between the Last Glacial Maximum and the present. The model successfully reconstructs glacial lakes suchas Lake Agassiz, Lake McConnell and the predecessors of the Great Lakes. LakeCC can be used to judge the quality ofice sheet reconstructions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-01-24
    Description: Spatially variable basal conditions are thought to govern how ice sheets behave at glacial time scales (〉1000 years) and responsible for changes in dynamics between the core and peripheral regions of the Laurentide and Fennoscandian ice sheets. Basal motion is accomplished via the deformation of unconsolidated sediments, or via sliding of the ice over an undeformable bed. We present an ice sheet sliding module for the Parallel Ice Sheet Model (PISM) that takes into account changes in sediment cover and incorporates surface meltwater. This model routes meltwater, produced at the surface and base of the ice sheet, toward the margin of the ice sheet. Basal sliding is accomplished through the deformation of water saturated sediments, or sliding at the ice-bed interface. In areas with continuous, water saturated sediments, sliding is almost always accomplished through sediment deformation. In areas with incomplete cover, sliding has a stronger dependence on the supply of water. We find that the addition of surface meltwater to the base is a more important factor for ice sheet evolution than the style of sliding. In a glacial cycle simulation, our model causes a more rapid buildup of the Laurentide Ice Sheet.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...