GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-11-08
    Description: Numerical simulations allow us to gain a comprehensive understanding of the underlying mechanisms of past, present and future climate changes. The mid-Holocene and the last interglacial were the two most recent warm episodes of Earth’s climate history and are the focus of paleoclimate research. Here, we present results of MH and LIG simulations with two versions of the state-of-the-art earth system model AWI-ESM. Most of the climate changes in MH and LIG compared to the pre-industrial era are agreed upon by the two model versions, including: (1) enhanced seasonality in surface temperature which is driven by the redistribution of seasonal insolation; (2) northward shift of the Intertropical Convergence Zone (ITCZ) and tropical rain belt; (3) a reduction in annual mean Arctic sea ice concentration; (4) weakening and northward displacement of the Northern Hemisphere Hadley Circulation, which is related to the decrease and poleward shift of the temperature gradient from the subtropical to the equator in the Northern Hemisphere; (5) westward shift of the Indo-PacificWalker Circulation due to anomalous warming over the Eurasia and North Africa during boreal summer; and (6) expansion and intensification of Northern Hemisphere summer monsoon rainfall, with the latter being dominated by the dynamic component of moisture budget, i.e., the strengthening of wind circulation. However, the simulated responses of the Atlantic Meridional Overturning Circulation (AMOC) in the two models yield different results for both the LIG and the MH. AMOC anomalies between the warm interglacial and pre-industrial periods are associated with changes in North Atlantic westerly winds and stratification of the water column at the North Atlantic due to changes in ocean temperature, salinity and density.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    COPERNICUS GESELLSCHAFT MBH
    In:  EPIC3Climate of the Past, COPERNICUS GESELLSCHAFT MBH, 18(1), pp. 67-87, ISSN: 1814-9324
    Publication Date: 2022-02-15
    Description: Mineral dust aerosol constitutes an important component of the Earth’s climate system, not only on short timescales due to direct and indirect influences on the radiation budget but also on long timescales by acting as a fertilizer for the biosphere and thus affecting the global carbon cy- cle. For a quantitative assessment of its impact on the global climate, state-of-the-art atmospheric and aerosol models can be utilized. In this study, we use the ECHAM6.3-HAM2.3 model to perform global simulations of the mineral dust cy- cle for present-day (PD), pre-industrial (PI), and last glacial maximum (LGM) climate conditions. The intercomparison with marine sediment and ice core data, as well as other mod- eling studies, shows that the obtained annual dust emissions of 1221, 923, and 5159 Tg for PD, PI, and LGM, respectively, generally agree well with previous findings. Our analyses fo- cusing on the Southern Hemisphere suggest that over 90 % of the mineral dust deposited over Antarctica are of Australian or South American origin during both PI and LGM. How- ever, contrary to previous studies, we find that Australia con- tributes a higher proportion during the LGM, which is mainly caused by changes in the precipitation patterns. Obtained in- creased particle radii during the LGM can be traced back to increased sulfate condensation on the particle surfaces as a consequence of longer particle lifetimes. The meridional transport of mineral dust from its source regions to the South Pole takes place at different altitudes depending on the grain size of the dust particles. We find a trend of generally lower transport heights during the LGM compared to PI as a con- sequence of reduced convection due to colder surfaces, indi- cating a vertically less extensive Polar cell.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  EPIC3Water Isotopes: From Weather to Climate, Geophysical Institute, UiB, 2021-11-17-2021-11-19
    Publication Date: 2022-07-04
    Description: Due to the recent and severe downtrend in sea ice coverage, Arctic-derived moisture serves as new, increasingly important, water source for the northern hemisphere. Feedback and exchange processes between the different hydrological compartments of the Arctic might be tracked by stable water isotopologues (H216O, H218O, HD16O). This is possible as evaporative sources, phase changes and transport history have a specific imprint on the isotopic compositions. The MOSAiC drift experiment offered the unique possibility to tackle the main hydrological processes occurring in the Central Arctic, covering a complete seasonal cycle, including the understudied Arctic winter. A Cavity Ring Down Spectrometer (CRDS) was installed on board of RV Polarstern and atmospheric humidity, δ18O, δD and d-excess were observed continuously from October 2019 to October 2020. Simultaneously, isotopic changes of water vapour have been measured by international partners at several land-based Arctic stations. A first analysis of the Polarstern isotopic vapour dataset reveals a range of 30‰ (min=-48.4; max=-11.4; mean=-32.4) variations in δ18Ο of atmospheric water vapour. A clear seasonal cycle with the most depleted values occurring in the dry and cold winter months and increasingly enriched values in spring, peaking in August is noticed. Strong, positive correlation is found with both local specific humidity (r2 = 0.87) and air temperature (r2=0.81). Several short-term events on synoptical time scales with abrupt fluctuations in the isotopic composition are detected throughout the entire dataset, especially during the freeze up phase (Oct-Nov) and the transition from frozen conditions to summer melt (Apr-Jun). Preliminary comparison of the Polarstern data with measurements from different Arctic stations indicates a strong influence of sea ice coverage on the isotopic signal. For an in-depth understanding of the observed isotopic changes, we quantitatively compare the measured isotopic signatures with model results from an ECHAM6 atmosphere simulation, which includes explicit water isotope diagnostics. For this simulation, pressure and temperature fields have been nudged to ERA5 data. The model-data comparison assesses the capability of this state-of-the-art AGCM to capture the first-order evaporation/condensation processes and their seasonal evolution. However, both a systematic overestimation of winter values and overall decreased variability of modeled isotope values as compared to the observation is found. Investigation of such discrepancies may help to identify deficits in the representation of the fine-scale exchange processes characterizing the central-Arctic water cycle.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-07-15
    Description: Numerical modeling enables a comprehensive understanding not only of the Earth's system today, but also of the past. To date, a significant amount of time and effort has been devoted to paleoclimate modeling and analysis, which involves the latest and most advanced Paleoclimate Modelling Intercomparison Project phase 4 (PMIP4). The definition of seasonality, which is influenced by slow variations in the Earth's orbital parameters, plays a key role in determining the calculated seasonal cycle of the climate. In contrast to the classical calendar used today, where the lengths of the months and seasons are fixed, the angular calendar calculates the lengths of the months and seasons according to a fixed number of degrees along the Earth's orbit. When comparing simulation results for different time intervals, it is essential to account for the angular calendar to ensure that the data for comparison are from the same position along the Earth's orbit. Most models use the classical calendar, which can lead to strong distortions of the monthly and seasonal values, especially for the climate of the past. Here, by analyzing daily outputs from multiple PMIP4 model simulations, we examine calendar effects on surface air temperature and precipitation under mid-Holocene, Last Interglacial, and pre-industrial climate conditions. We came to the following conclusions. (a) The largest cooling bias occurs in boreal autumn when the classical calendar is applied for the mid-Holocene and Last Interglacial, due to the fact that the vernal equinox is fixed on 21 March. (b) The sign of the temperature anomalies between the Last Interglacial and pre-industrial in boreal autumn can be reversed after the switch from the classical to angular calendar, particularly over the Northern Hemisphere continents. (c) Precipitation over West Africa is overestimated in boreal summer and underestimated in boreal autumn when the classical seasonal cycle is applied. (d) Finally, month-length adjusted values for surface air temperature and precipitation are very similar to the day-length adjusted values, and therefore correcting the calendar based on the monthly model results can largely reduce the artificial bias. In addition, we examine the calendar effects in three transient simulations for 6–0 ka by AWI-ESM, MPI-ESM, and IPSL-CM. We find significant discrepancies between adjusted and unadjusted temperature values over continents for both hemispheres in boreal autumn, while for other seasons the deviations are relatively small. A drying bias can be found in the summer monsoon precipitation in Africa (in the classical calendar), whereby the magnitude of bias becomes smaller over time. Overall, our study underlines the importance of the application of calendar transformation in the analysis of climate simulations. Neglecting the calendar effects could lead to a profound artificial distortion of the calculated seasonal cycle of surface air temperature and precipitation.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-12
    Description: The Middle Miocene (15.99 to 11.65 Ma) of Europe witnessed major climatic, environmental, and vegetational change, yet we are lacking detailed reconstructions of Middle Miocene temperature and precipitation patterns over Europe. Here, we use a high-resolution (∼0.75°) isotope-enabled general circulation model (ECHAM5-wiso) with time-specific boundary conditions to investigate changes in temperature, precipitation, and δ18O in precipitation (δ18Op). Experiments were designed with variable elevation configurations of the European Alps and different atmospheric CO2 levels to examine the influence of Alpine elevation and global climate forcing on regional climate and δ18Op patterns. Modeling results are in agreement with available paleobotanical temperature data and with low-resolution Middle Miocene experiments of the MioMIP1 project. However, simulated precipitation rates are 300 - 500 mm/year lower in the Middle Miocene than for pre-industrial times for central Europe. This result is consistent with precipitation estimates from herpetological fossil assemblages, but contradicts precipitation estimates from paleobotanical data. We attribute the Middle Miocene precipitation change in Europe to shifts in large-scale pressure patterns in the North Atlantic and over Europe and associated changes in wind direction and humidity. We suggest that global climate forcing contributed to a maximum δ18Op change of ∼2‰ over high elevation (Alps) and ∼1‰ over low elevation regions. In contrast, we observe a maximum modeled δ18Op decrease of 8‰ across the Alpine orogen due to Alpine topography. However, the elevation-δ18Op lapse rate shallows in the Middle Miocene, leading to a possible underestimation of paleotopography when using present-day δ18Op - elevation relationships data for stable isotope paleoaltimetry studies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-04
    Description: The Arctic atmosphere has undergone a process of moistening during the past decades. The loss of sea ice has led to enhanced transfer of heat and moisture from the ocean to the lower atmosphere, while strengthening of cyclonic events has enhanced the poleward transport of moisture from lower latitudes. Eventually, the increased humidity of the Arctic air masses serves today as a new, increasingly important source of moisture for the northern hemisphere. Still, to date, the relative contributions of local evaporation versus distant-moisture sources remains uncertain, as well as the processes responsible for exchanges within and between the hydrological compartments of the Arctic. Such uncertainties limit our ability to understand the importance of the Arctic water cycle to global climate change and to project its future. In this study we use atmospheric water vapour isotopes to investigate the origin of the Arctic moisture and assess whether and which relevant changes occur within the coupled ocean-sea ice-atmosphere system (i.e., sea ice, sea water, snow, melt ponds). Stable isotopologues of water (HDO, H218O) have different saturation vapour pressures and molecular diffusivity coefficients in air. These differences lead to isotopic fractionation during each phase change of water, making water isotopes a powerful tracer of the Arctic hydrological cycle. Water vapour humidity, delta-18O, and delta-D have been measured continuously by a Picarro L2140i Cavity Ringdown Spectrometer installed onboard research vessel Polarstern during the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, which took place in the Central Arctic Ocean from October 2019 to September 2020. Our measurements depict a clear seasonal cycle and a strong and significant covariance of delta-18O and delta-D with air temperature and specific humidity. At the synoptic time scale the dataset is characterized by the occurrence of events associated with humidity peaks and abrupt isotopic excursions. We use statistical analysis and backwards trajectories to i) identify the origin of the air masses and the relative contributions of distant vs. locally sourced moisture, and ii) illustrate the isotopic fingerprint of these two distinct moisture contributors and discuss on the source-to-sink processes leading to their differences. Further, the MOSAiC observations are compared to an ECHAM6 simulation, nudged to ERA5 reanalysis data and enabled for water isotope diagnostics. The model-data comparison makes it possible to explore the spatial representativeness of our observations and assess whether the model can correctly simulate the observed isotopic changes. In the future, our observations may serve as a benchmark to test the parametrization of under(mis-)represented fractionation processes such as snow sublimation, evaporation from leads and melt ponds. Our study provides the very first isotopic characterization of the Central Arctic moisture throughout an entire year and contributes to disentangling the influence of local evaporative processes versus large-scale vapour transport on the Arctic moistening.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3International MOSAiC Science Conference/Workshop, Potsdam, 2022-04-25-2022-04-29
    Publication Date: 2022-10-04
    Description: Evaporation from the increasingly ice-free Arctic ocean causes moistening of the atmosphere and serves as an unprecedent water source for the Northern Hemisphere. Atmospheric transport of moisture and its interaction with the other Arctic hydrological compartments can be tracked by primary and secondary water isotope parameters. We present observations of atmospheric humidity, δ18O, δD and d-excess, obtained from a cavity-ring-down spectrometer installed on RV Polarstern and operated continuously during the MOSAiC expedition. The dataset reveals a clear seasonal cycle of the atmospheric water vapour; positive correlation is found both with local specific humidity and air temperature. The comparison of synoptical events, characterized by abrupt isotopic fluctuations, with simultaneous observations from land-based Arctic stations indicates a strong influence of sea ice coverage on the isotopic signal. For an in-depth understanding of the isotopic changes, the observations are compared to results of an isotope-enhanced ECHAM6 atmosphere simulation. The model-data comparison assesses the capability of this state-of-the-art AGCM to capture the first-order evaporation/condensation processes and their seasonal evolution. However, a systematic overestimation of winter values and overall decreased variability of modeled values is found. Investigation of such discrepancies may help to identify deficits in the representation of the fine-scale exchange processes characterizing the central-Arctic water cycle.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-06-16
    Description: The Arctic hydrological cycle undergoes rapid and pronounced changes, including alterations in oceanic and atmospheric circulations, and precipitation patterns. Stable water isotopes (δ18O, δ2H, d-excess) can be used to trace these processes including their potential to feedback into the global climate system. The MOSAiC expedition provided a unique opportunity to collect, analyze, and synthesize discrete samples of the different hydrological compartments in the central Arctic, comprising sea ice, seawater, snow, and melt ponds. Here, we present spatio-temporal variations in the isotopic signatures of more than 1,000 water samples. We found that (i) average seawater δ18O of -1.7‰ conforms to observed and modelled isotopic traits of the Arctic Ocean; (ii) second year ice is relatively depleted compared to first year ice with average δ18O values of -3.1‰ and -0.7‰, respectively. This might be due to post-depositional exchange processes with snow, which has the most depleted isotopic signature among all compartments (mean δ18O=-15.1‰). Our dataset provides an unprecedented description of the present-day isotopic composition of the Arctic water covering a complete seasonal cycle. This will ultimately contribute to resolve the linkages between sea ice, ocean, and atmosphere during critical transitions from frozen ocean to open water conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    JOHN WILEY & SONS LTD
    In:  EPIC3Journal of Quaternary Science, JOHN WILEY & SONS LTD, pp. 1-16, ISSN: 0267-8179
    Publication Date: 2022-06-14
    Description: Transient simulations of the global fully coupled climate model COSMOS under realistic varying orbital and greenhouse gas forcings are systematically compared to diatom oxygen isotope (δ18O_diatom ) records from Russian lakes with focus on Eurasian Holocene climate trends. The measured δ18O_diatom decrease and other temperature proxies are interpreted as large‐scale cooling throughout the Holocene while the model simulations are biased too warm, likely through missing radiative forcings. This large‐scale warm bias also dictates the modeled δ18O_precipitation. Hence, at locations where the signs of model and proxy temperature/precipitation trends agree, measured δ18O_diatom and modeled δ18O_precipitation trends show notable accordance. An increased temporal variability of modeled δ18O_precipitation is linked to persistent atmospheric circulation patterns. Applying the transient forcings in an accelerated way (every 10th year only) yields a similar, yet weaker or delayed model response, especially in the ocean.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU Fall Meeting 2021
    In:  EPIC3AGU Fall Meeting 2021, New Orleans, USA, 2021-12-13-2021-12-17AGU Fall Meeting 2021
    Publication Date: 2022-06-14
    Description: The Arctic water cycle is changing dramatically as evidenced by marked shifts in Arctic sea ice conditions, atmospheric processes, and hydrological regimes. Evaporation from the increasingly ice-free Arctic ocean causes moistening of the atmosphere and serves as an unprecedented water source for the Northern Hemisphere. Stable water isotopes (δ18O, δ2H, d-excess) can be used to trace exchange processes between ocean and atmosphere including their potential to feedback into the global climate system. The MOSAiC expedition provided a unique opportunity to collect, analyze, and synthesize discrete samples of the different hydrological compartments in the central Arctic, comprising sea ice, seawater, snow, and melt ponds. Moreover, we present observations of atmospheric humidity, δ18O, δ2H, and d-excess, obtained from a cavity-ring-down spectrometer installed on RV Polarstern and operated continuously during the MOSAiC expedition. By analyzing discrete samples, we found that average seawater δ18O of -1.7±1.95‰ (n=126) conforms to observed and modelled isotopic traits of the Arctic Ocean. Second year ice is relatively depleted compared to first year ice with average δ18O values of -3.1±2.81‰ (n=397) and -0.7±2.28‰ (n=409), respectively. Snow on top of the sea ice (n=303) has the most depleted isotopic signature among all compartments shaping the Arctic water cycle (mean δ18O=-15.3±7.12‰) The atmospheric water vapour dataset reveals a clear seasonal cycle; significant positive correlations are found both with local specific humidity and air temperature. The comparison of synoptic events, characterized by abrupt isotopic fluctuations, with simultaneous observations from land-based Arctic stations indicates a strong influence of sea ice coverage on the isotopic signal. For an in-depth understanding of the isotopic changes, the observations are compared to an isotope-enhanced ECHAM6 atmosphere simulation. The model-data comparison assesses the capability of this state-of-the-art AGCM to capture the first-order evaporation/condensation processes and their seasonal evolution. Our dataset provides a comprehensive description of the present-day isotopic composition of the Arctic water covering a complete seasonal cycle. This will ultimately contribute to resolve the linkages between sea ice, ocean, and atmosphere during critical transitions from frozen ocean to open water conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...