GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Matabos, M., Barreyre, T., Juniper, S., Cannat, M., Kelley, D., Alfaro-Lucas, J., Chavagnac, V., Colaço, A., Escartin, J., Escobar, E., Fornari, D., Hasenclever, J., Huber, J., Laës-Huon, A., Lantéri, N., Levin, L., Mihaly, S., Mittelstaedt, E., Pradillon, F., Lantéri, N., Levin, L. A., Mihaly, S., Mittelstaedt, E., Pradillon, F., Sarradin, P-M., Sarrazin, J., Tomasi, B., Venkatesan, R., & Vic, C. Integrating Multidisciplinary Observations in Vent Environments (IMOVE): decadal progress in deep-sea observatories at hydrothermal vents. Frontiers in Marine Science, 9, (2022): 866422, https://doi.org/10.3389/fmars.2022.866422.
    Description: The unique ecosystems and biodiversity associated with mid-ocean ridge (MOR) hydrothermal vent systems contrast sharply with surrounding deep-sea habitats, however both may be increasingly threatened by anthropogenic activity (e.g., mining activities at massive sulphide deposits). Climate change can alter the deep-sea through increased bottom temperatures, loss of oxygen, and modifications to deep water circulation. Despite the potential of these profound impacts, the mechanisms enabling these systems and their ecosystems to persist, function and respond to oceanic, crustal, and anthropogenic forces remain poorly understood. This is due primarily to technological challenges and difficulties in accessing, observing and monitoring the deep-sea. In this context, the development of deep-sea observatories in the 2000s focused on understanding the coupling between sub-surface flow and oceanic and crustal conditions, and how they influence biological processes. Deep-sea observatories provide long-term, multidisciplinary time-series data comprising repeated observations and sampling at temporal resolutions from seconds to decades, through a combination of cabled, wireless, remotely controlled, and autonomous measurement systems. The three existing vent observatories are located on the Juan de Fuca and Mid-Atlantic Ridges (Ocean Observing Initiative, Ocean Networks Canada and the European Multidisciplinary Seafloor and water column Observatory). These observatories promote stewardship by defining effective environmental monitoring including characterizing biological and environmental baseline states, discriminating changes from natural variations versus those from anthropogenic activities, and assessing degradation, resilience and recovery after disturbance. This highlights the potential of observatories as valuable tools for environmental impact assessment (EIA) in the context of climate change and other anthropogenic activities, primarily ocean mining. This paper provides a synthesis on scientific advancements enabled by the three observatories this last decade, and recommendations to support future studies through international collaboration and coordination. The proposed recommendations include: i) establishing common global scientific questions and identification of Essential Ocean Variables (EOVs) specific to MORs, ii) guidance towards the effective use of observatories to support and inform policies that can impact society, iii) strategies for observatory infrastructure development that will help standardize sensors, data formats and capabilities, and iv) future technology needs and common sampling approaches to answer today’s most urgent and timely questions.
    Description: The first workshop in Bergen was additionally funded by the K.G. Jebsen Centre for Deep Sea Research and the University of Bergen. The second workshop was supported by ISblue project, Interdisciplinary graduate school for the blue planet (ANR-17-EURE-0015) and co-funded by a grant from the French government under the program “Investissements d’Avenir”. Additional funding was provided by Ifremer, and the départment du Finistère. The operation and maintenance of the EMSO-Azores observatory is funded by the by the EMSO-FR Research Infrastructure (MESR), which is managed by an Ifremer-CNRS collaboration. The operation and maintenance of the Endeavour observatory is funded by the Canada Foundation for Innovation’s Major Science Infrastructure program and the Department of Fisheries and Oceans (Canada). The operation and maintenance of the Axial Seamount observatory is funded by the National Science Foundation as part of the Ocean Observatories Initiative Regional Cabled Array. MM, JS and PMS acknowledge funding from the EU Horizon 2020 iAtlantic project (Grant Agreement No. 818123). AC was supported by the Operational Program AZORES 2020, through the Fund 01-0145-FEDER-1279 000140 “MarAZ Researchers: Consolidate a body of researchers in Marine Sciences in the Azores” of the European Union. She was also supported by FCT – Foundation for Science and Technology, I.P., under the project UIDB/05634/2020 and UIDP/05634/2020 and through the Regional Government of the Azores through the initiative to support the Research Centers of the University of the Azores and through the project M1.1.A/REEQ.CIENTÍFICO UI&D/2021/010.
    Keywords: Essential ocean variables (EOVs) ; Essential biological variables (EBVs) ; Mid-ocean ridge (MOR) ; Sensors, seabed platforms ; Vent fluid dynamics ; Vent communities dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 102(10), (2021): E1936–E1951, https://doi.org/10.1175/BAMS-D-20-0113.1.
    Description: In the Bay of Bengal, the warm, dry boreal spring concludes with the onset of the summer monsoon and accompanying southwesterly winds, heavy rains, and variable air–sea fluxes. Here, we summarize the 2018 monsoon onset using observations collected through the multinational Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISO-BoB) program between the United States, India, and Sri Lanka. MISO-BoB aims to improve understanding of monsoon intraseasonal variability, and the 2018 field effort captured the coupled air–sea response during a transition from active-to-break conditions in the central BoB. The active phase of the ∼20-day research cruise was characterized by warm sea surface temperature (SST 〉 30°C), cold atmospheric outflows with intermittent heavy rainfall, and increasing winds (from 2 to 15 m s−1). Accumulated rainfall exceeded 200 mm with 90% of precipitation occurring during the first week. The following break period was both dry and clear, with persistent 10–12 m s−1 wind and evaporation of 0.2 mm h−1. The evolving environmental state included a deepening ocean mixed layer (from ∼20 to 50 m), cooling SST (by ∼1°C), and warming/drying of the lower to midtroposphere. Local atmospheric development was consistent with phasing of the large-scale intraseasonal oscillation. The upper ocean stores significant heat in the BoB, enough to maintain SST above 29°C despite cooling by surface fluxes and ocean mixing. Comparison with reanalysis indicates biases in air–sea fluxes, which may be related to overly cool prescribed SST. Resolution of such biases offers a path toward improved forecasting of transition periods in the monsoon.
    Description: This work was supported through the U.S. Office of Naval Research’s Departmental Research Initiative: Monsoon Intraseasonal Oscillations in the Bay of Bengal, the Indian Ministry of Earth Science’s Ocean Mixing and Monsoons Program, and the Sri Lankan National Aquatic Resources Research and Development Agency. We thank the Captain and crew of the R/V Thompson for their help in data collection. Surface atmospheric fields included fluxes were quality controlled and processed by the Boundary Layer Observations and Processes Team within the NOAA Physical Sciences Laboratory. Forecast analysis was completed by India Meteorological Department. Drone image was taken by Shreyas Kamat with annotations by Gualtiero Spiro Jaeger. We also recognize the numerous researchers who supported cruise- and land-based measurements. This work represents Lamont-Doherty Earth Observatory contribution number 8503, and PMEL contribution number 5193.
    Description: 2022-04-01
    Keywords: Atmosphere-ocean interaction ; Monsoons ; In situ atmospheric observations ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-07-13
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(2), (2022): 271–282. https://doi.org/10.1175/jtech-d-21-0069.1.
    Description: The inception of a moored buoy network in the northern Indian Ocean in 1997 paved the way for systematic collection of long-term time series observations of meteorological and oceanographic parameters. This buoy network was revamped in 2011 with Ocean Moored buoy Network for north Indian Ocean (OMNI) buoys fitted with additional sensors to better quantify the air–sea fluxes. An intercomparison of OMNI buoy measurements with the nearby Woods Hole Oceanographic Institution (WHOI) mooring during the year 2015 revealed an overestimation of downwelling longwave radiation (LWR↓). Analysis of the OMNI and WHOI radiation sensors at a test station at National Institute of Ocean Technology (NIOT) during 2019 revealed that the accurate and stable amplification of the thermopile voltage records along with the customized datalogger in the WHOI system results in better estimations of LWR↓. The offset in NIOT measured LWR↓ is estimated first by segregating the LWR↓ during clear-sky conditions identified using the downwelling shortwave radiation measurements from the same test station, and second, finding the offset by taking the difference with expected theoretical clear-sky LWR↓. The corrected LWR↓ exhibited good agreement with that of collocated WHOI measurements, with a correlation of 0.93. This method is applied to the OMNI field measurements and again compared with the nearby WHOI mooring measurements, exhibiting a better correlation of 0.95. This work has led to the revamping of radiation measurements in OMNI buoys and provides a reliable method to correct past measurements and improve estimation of air–sea fluxes in the Indian Ocean.
    Description: KJJ and RV thank Ministry of Earth Sciences (MoES), Government of India, Secretary, MoES, and Director, NIOT, for the support and encouragement in carrying out the work under the National Monsoon Mission, Ocean Mixing and Monsoon (OMM) program. AT, JTF, and RAW thank Office of Naval Research Grants N00014-19-12410 and N00014-17-12880, United States, for funding and support. The OOS team at NIOT is acknowledged for their efforts in maintaining the OMNI buoy network in North Indian Ocean. We acknowledge Dr. B.W. Blomquist, University of Colorado, for his support in computing clear-sky radiation and Iury T. Simoes-Sousa, University of Massachusetts, Dartmouth, for the graphics. NCMRWF, MoES, Government of India, is acknowledged for NGFS reanalysis dataset, which is produced under the collaboration between NCMRWF, IITM, and IMD.
    Keywords: Algorithms ; Buoy observations ; In situ oceanic observations ; Instrumentation/sensors ; Quality assurance/control
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...