GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-25
    Description: Dataset: Temperature from thermistor chain
    Description: Temperature from a thermistor chain deployed along a 30m depth contour at Mission Beach, CA in June of 2016. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/742137
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1459393
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(12),(2020): e2020JC016271, https://doi.org/10.1029/2020JC016271.
    Description: Asian summer monsoon has a planetary‐scale, westward propagating “quasi‐biweekly” mode of variability with a 10–25 day period. Six years of moored observations at 18°N, 89.5°E in the north Bay of Bengal (BoB) reveal distinct quasi‐biweekly variability in sea surface salinity (SSS) during summer and autumn, with peak‐to‐peak amplitude of 3–8 psu. This large‐amplitude SSS variability is not due to variations of surface freshwater flux or river runoff. We show from the moored data, satellite SSS, and reanalyses that surface winds associated with the quasi‐biweekly monsoon mode and embedded weather‐scale systems, drive SSS and coastal sea level variability in 2015 summer monsoon. When winds are calm, geostrophic currents associated with mesoscale ocean eddies transport Ganga‐Brahmaputra‐Meghna river water southward to the mooring, salinity falls, and the ocean mixed layer shallows to 1–10 m. During active (cloudy, windy) spells of quasi‐biweekly monsoon mode, directly wind‐forced surface currents carry river water away to the east and north, leading to increased salinity at the moorings, and rise of sea level by 0.1–0.5 m along the eastern and northern boundary of the bay. During July–August 2015, a shallow pool of low‐salinity river water lies in the northeastern bay. The amplitude of a 20‐day oscillation of sea surface temperature (SST) is two times larger within the fresh pool than in the saltier ocean to the west, although surface heat flux is nearly identical in the two regions. This is direct evidence that spatial‐temporal variations of BoB salinity influences sub‐seasonal SST variations, and possibly SST‐mediated monsoon air‐sea interaction.
    Description: The authors thank the Ministry of Earth Sciences (MoES) institutes NIOT and INCOIS, and the Upper Ocean Processes (UOP) group at WHOI for design, integration, and deployment of moorings in the BoB. The WHOI mooring was deployed from the ORV Sagar Nidhi and recovered from the ORV Sagar Kanya—we thank the officers, crew and science teams on the cruises for their support. Sengupta, Ravichandran and Sukhatme acknowledge MoES and the National Monsoon Mission, Indian Institute of Tropical Meteorology (IITM), Pune, for support; Lucas and Farrar acknowledge the US Office of Naval Research for support of ASIRI through grants N00014‐13‐1‐0489, N0001413‐100453, N0001417‐12880. We thank S. Shivaprasad, Dipanjan Chaudhuri and Jared Buckley for discussion on ocean currents and Ekman flow, and Fabien Durand for discussion on sea level. JSL would like to thank the Divecha Center for Climate Change, IISc., for support. DS acknowledges support from the Department of Science and Technology (DST), New Delhi, under the Indo‐Spanish Programme.
    Description: 2021-05-16
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-10
    Description: Unprecedented quantities of heat are entering the Pacific sector of the Arctic Ocean through Bering Strait, particularly during summer months. Though some heat is lost to the atmosphere during autumn cooling, a significant fraction of the incoming warm, salty water subducts (dives beneath) below a cooler fresher layer of near-surface water, subsequently extending hundreds of kilometers into the Beaufort Gyre. Upward turbulent mixing of these sub-surface pockets of heat is likely accelerating sea ice melt in the region. This Pacific-origin water brings both heat and unique biogeochemical properties, contributing to a changing Arctic ecosystem. However, our ability to understand or forecast the role of this incoming water mass has been hampered by lack of understanding of the physical processes controlling subduction and evolution of this this warm water. Crucially, the processes seen here occur at small horizontal scales not resolved by regional forecast models or climate simulations; new parameterizations must be developed that accurately represent the physics. Here we present novel high resolution observations showing the detailed process of subduction and initial evolution of warm Pacific-origin water in the southern Beaufort Gyre.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in MacKinnon, J. A., Simmons, H. L., Hargrove, J., Thomson, J., Peacock, T., Alford, M. H., Barton, B., Boury, S., Brenner, S. D., Couto, N., Danielson, S. L., Fine, E. C., Graber, H. C., Guthrie, J., Hopkins, J. E., Jayne, S. R., Jeon, C., Klenz, T., Lee, C. M., Lenn, Y-D., Lucas, A. J., Lund, B., Mahaffey, C., Norman, L., Rainville, L., Smith, M. M., Thomas, L. N., Torres-Valdés, S., & Wood, K. R. A warm jet in a cold ocean. Nature Communications, 12(1), (2021): 2418, https://doi.org/10.1038/s41467-021-22505-5.
    Description: Unprecedented quantities of heat are entering the Pacific sector of the Arctic Ocean through Bering Strait, particularly during summer months. Though some heat is lost to the atmosphere during autumn cooling, a significant fraction of the incoming warm, salty water subducts (dives beneath) below a cooler fresher layer of near-surface water, subsequently extending hundreds of kilometers into the Beaufort Gyre. Upward turbulent mixing of these sub-surface pockets of heat is likely accelerating sea ice melt in the region. This Pacific-origin water brings both heat and unique biogeochemical properties, contributing to a changing Arctic ecosystem. However, our ability to understand or forecast the role of this incoming water mass has been hampered by lack of understanding of the physical processes controlling subduction and evolution of this this warm water. Crucially, the processes seen here occur at small horizontal scales not resolved by regional forecast models or climate simulations; new parameterizations must be developed that accurately represent the physics. Here we present novel high resolution observations showing the detailed process of subduction and initial evolution of warm Pacific-origin water in the southern Beaufort Gyre.
    Description: Support for this work was provided by the US Office of Naval Research Stratified Ocean Dynamics of the Arctic program (grant numbers N000141512903, N000141612378, N000141612377, N000141612379, N0001416123450, N000141612360, N000141612349, N000141812007, N000141812475, and N000141912514). Additional support for biogeochemistry sampling was provided by UK (NERC) and Germany (BMBF) through the Changing Arctic Ocean Program’s ARISE (NE/P006035/1, NE/P006000/2), PEANUTS (NE/R01275X/1, NE/R012547/2, and BMBF 03F0804) projects and the UK-France PhD program DGA/Dstl. Float deployments and hydrographic data compilations were supported in part by North Pacific Research Board grants A91-99a and A91-00a. The deployment of autonomous ocean profilers was supported by ONR, NOAA Research, and the Joint Institute for the Study of the Atmosphere and Ocean (JISAO) under NOAA Cooperative Agreement NA15OAR4320063.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 102(10), (2021): E1936–E1951, https://doi.org/10.1175/BAMS-D-20-0113.1.
    Description: In the Bay of Bengal, the warm, dry boreal spring concludes with the onset of the summer monsoon and accompanying southwesterly winds, heavy rains, and variable air–sea fluxes. Here, we summarize the 2018 monsoon onset using observations collected through the multinational Monsoon Intraseasonal Oscillations in the Bay of Bengal (MISO-BoB) program between the United States, India, and Sri Lanka. MISO-BoB aims to improve understanding of monsoon intraseasonal variability, and the 2018 field effort captured the coupled air–sea response during a transition from active-to-break conditions in the central BoB. The active phase of the ∼20-day research cruise was characterized by warm sea surface temperature (SST 〉 30°C), cold atmospheric outflows with intermittent heavy rainfall, and increasing winds (from 2 to 15 m s−1). Accumulated rainfall exceeded 200 mm with 90% of precipitation occurring during the first week. The following break period was both dry and clear, with persistent 10–12 m s−1 wind and evaporation of 0.2 mm h−1. The evolving environmental state included a deepening ocean mixed layer (from ∼20 to 50 m), cooling SST (by ∼1°C), and warming/drying of the lower to midtroposphere. Local atmospheric development was consistent with phasing of the large-scale intraseasonal oscillation. The upper ocean stores significant heat in the BoB, enough to maintain SST above 29°C despite cooling by surface fluxes and ocean mixing. Comparison with reanalysis indicates biases in air–sea fluxes, which may be related to overly cool prescribed SST. Resolution of such biases offers a path toward improved forecasting of transition periods in the monsoon.
    Description: This work was supported through the U.S. Office of Naval Research’s Departmental Research Initiative: Monsoon Intraseasonal Oscillations in the Bay of Bengal, the Indian Ministry of Earth Science’s Ocean Mixing and Monsoons Program, and the Sri Lankan National Aquatic Resources Research and Development Agency. We thank the Captain and crew of the R/V Thompson for their help in data collection. Surface atmospheric fields included fluxes were quality controlled and processed by the Boundary Layer Observations and Processes Team within the NOAA Physical Sciences Laboratory. Forecast analysis was completed by India Meteorological Department. Drone image was taken by Shreyas Kamat with annotations by Gualtiero Spiro Jaeger. We also recognize the numerous researchers who supported cruise- and land-based measurements. This work represents Lamont-Doherty Earth Observatory contribution number 8503, and PMEL contribution number 5193.
    Description: 2022-04-01
    Keywords: Atmosphere-ocean interaction ; Monsoons ; In situ atmospheric observations ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: Profile data from WireWalker
    Description: Profile data from WireWalker deployments at Mission Beach, California in 2016 at a 50m depth. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/742124
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1459393
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: ADCP
    Description: Current velocities from an Acoustic Doppler Current Profiler (ADCP) deployed along a 30m depth contour at Mission Beach, CA in June of 2016. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/742132
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1459393
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-11-01
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 39(5), (2022): 595–617, https://doi.org/10.1175/jtech-d-21-0039.1.
    Description: The future Surface Water and Ocean Topography (SWOT) mission aims to map sea surface height (SSH) in wide swaths with an unprecedented spatial resolution and subcentimeter accuracy. The instrument performance needs to be verified using independent measurements in a process known as calibration and validation (Cal/Val). The SWOT Cal/Val needs in situ measurements that can make synoptic observations of SSH field over an O(100) km distance with an accuracy matching the SWOT requirements specified in terms of the along-track wavenumber spectrum of SSH error. No existing in situ observing system has been demonstrated to meet this challenge. A field campaign was conducted during September 2019–January 2020 to assess the potential of various instruments and platforms to meet the SWOT Cal/Val requirement. These instruments include two GPS buoys, two bottom pressure recorders (BPR), three moorings with fixed conductivity–temperature–depth (CTD) and CTD profilers, and a glider. The observations demonstrated that 1) the SSH (hydrostatic) equation can be closed with 1–3 cm RMS residual using BPR, CTD mooring and GPS SSH, and 2) using the upper-ocean steric height derived from CTD moorings enable subcentimeter accuracy in the California Current region during the 2019/20 winter. Given that the three moorings are separated at 10–20–30 km distance, the observations provide valuable information about the small-scale SSH variability associated with the ocean circulation at frequencies ranging from hourly to monthly in the region. The combined analysis sheds light on the design of the SWOT mission postlaunch Cal/Val field campaign.
    Description: The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). All authors are supported by the SWOT project. J. T. Farrar was partially supported by NASA NNX16AH76G.
    Description: 2022-11-01
    Keywords: Internal waves ; Ocean dynamics ; Small scale processes ; Altimetry ; Global positioning systems (GPS) ; In situ oceanic observations ; Ship observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(9), (2020): 2669-2688, doi:10.1175/JPO-D-19-0077.1
    Description: The scale-dependent variance of tracer properties in the ocean bears the imprint of the oceanic eddy field. Anomalies in spice (which combines anomalies in temperature T and salinity S on isopycnal surfaces) act as passive tracers beneath the surface mixed layer (ML). We present an analysis of spice distributions along isopycnals in the upper 200 m of the ocean, calculated with over 9000 vertical profiles of T and S measured along ~4800 km of ship tracks in the Bay of Bengal. The data are from three separate research cruises—in the winter monsoon season of 2013 and in the late and early summer monsoon seasons of 2015 and 2018. We present a spectral analysis of horizontal tracer variance statistics on scales ranging from the submesoscale (~1 km) to the mesoscale (~100 km). Isopycnal layers that are closer to the ML-base exhibit redder spectra of tracer variance at scales ≲10 km than is predicted by theories of quasigeostrophic turbulence or frontogenesis. Two plausible explanations are postulated. The first is that stirring by submesoscale motions and shear dispersion by near-inertial waves enhance effective horizontal mixing and deplete tracer variance at horizontal scales ≲10 km in this region. The second is that the spice anomalies are coherent with dynamical properties such as potential vorticity, and not interpretable as passively stirred.
    Description: We are grateful to the captain and crew of the R/V Roger Revelle and the R/V Thomas G. Thompson, and all ASIRI-OMM and MISO-BOB scientists. We thank Prof. Andrew Thompson and an anonymous reviewer for suggestions that improved the manuscript. This work was carried out under the Office of Naval Research’s Air-Sea Interaction Regional Initiative (ASIRI) and Monsoon Intra-Seasonal Oscillations in the Bay of Bengal (MISO-BOB) research initiatives, in collaboration with the Indian Ministry of Earth Science’s Ocean Mixing and Monsoons (OMM) initiative supported by the Monsoon Mission. Support came from ONR Grants N00014-16-1-2470, N00014-13-1-0451, N00014-17-1-2390 (G.S.J. and A.M.), N00014-14-1-0455 (J.M. and J.N), N00014-17-1-2511 (J.M.), N00014-13-1-0489, N00014-17-1-2391 (A.L.), N00014-15-1-2634 (E.S.), N00014-13-1-0456, N00014-17-1-2355 (A.T.), and N00014-13-1-0453, N00014-17-1-2880 (J.F.).
    Description: 2021-02-28
    Keywords: Ocean dynamics ; Thermocline ; Water masses/storage ; In situ oceanic observations ; Tracers ; Spectral analysis/models/distribution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...