GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    EGU General Assembly 2022
    In:  EPIC3EGU General Assembly 2022, Vienna, 2022Vienna, EGU General Assembly 2022
    Publication Date: 2022-10-27
    Description: Tipping of an ice shelf cavity from a cold to a warm state happens when a sustained inflow of warm Circumpolar Deep Water (CDW) or a modified variant of it replaces High Salinity Shelf Water (HSSW) and Ice Shelf Water (ISW) in a cold-water cavity. HSSW and ISW with temperatures close to or even below the surface freezing point provide little heat for melting glacial ice. CDW derivatives, however, can cause a substantial multiplication of the ice shelf basal melt rates. The increased melt water release may trigger a positive feedback loop that stabilizes the warm state. Therefore, if the outside circumstances turned back to previous conditions, a reversal from warm to cold would not occur under the same conditions as the switch from cold to warm. A warm tipping has been found possible for the Filchner-Ronne Ice Shelf (FRIS) cavity in previous studies. In the framework of the EU project TiPACCs, we now reinforce our focus on the conditions which can cause a tipping for the Filchner Ronne and other Antarctic ice shelf cavities. We conducted a series of FESOM-1.4 simulations with different manipulations of the atmospheric forcing variables in order to analyse the common factors of tipping events, opposed to more stable results. We found that for the Filchner Trough region in a warming world, the crucial balance is between the different rates of warming and freshening of (a) the continental shelf waters in front of the ice shelf and (b) the waters transported with the slope current. While other studies identified an uplift of the pycnocline at the continental shelf break as a necessary condition for warm onshore flow, we deem a tipping more likely to hinge on the density loss of the shelf waters. When density on the continental shelf decreases more rapidly than in the slope current at sill depth, the ice shelf cavity is prone to tip. Reversibility of the tipping is possible within three decades under ERA Interim atmospheric forcing (1979-2017), but our study also confirms that hysteresis effects can cause a bistability of warm and cold state in the FRIS cavity under the 20th century HadCM3 forcing.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Janout, M. A., Hellmer, H. H., Hattermann, T., Huhn, O., Sueltenfuss, J., Osterhus, S., Stulic, L., Ryan, S., Schroeder, M., & Kanzow, T. FRIS revisited in 2018: on the circulation and water masses at the Filchner and Ronne Ice Shelves in the Southern Weddell Sea. Journal of Geophysical Research: Oceans, 126(6), (2021): e2021JC017269, https://doi.org/10.1029/2021JC017269.
    Description: The Filchner-Ronne Ice Shelf (FRIS) is characterized by moderate basal melt rates due to the near-freezing waters that dominate the wide southern Weddell Sea continental shelf. We revisited the region in austral summer 2018 with detailed hydrographic and noble gas surveys along FRIS. The FRIS front was characterized by High Salinity Shelf Water (HSSW) in Ronne Depression, Ice Shelf Water (ISW) on its eastern flank, and an inflow of modified Warm Deep Water (mWDW) entering through Central Trough. Filchner Trough was dominated by Ronne HSSW-sourced ISW, likely forced by a recently intensified circulation beneath FRIS due to enhanced sea ice production in the Ronne polynya since 2015. Glacial meltwater fractions and tracer-based water mass dating indicate two separate ISW outflow cores, one hugging the Berkner slope after a two-year travel time, and the other located in the central Filchner Trough following a ∼six year-long transit through the FRIS cavity. Historical measurements indicate the presence of two distinct modes, in which water masses in Filchner Trough were dominated by either Ronne HSSW-derived ISW (Ronne-mode) or more locally derived Berkner-HSSW (Berkner-mode). While the dominance of these modes has alternated on interannual time scales, ocean densities in Filchner Trough have remained remarkably stable since the first surveys in 1980. Indeed, geostrophic velocities indicated outflowing ISW-cores along the trough's western flank and onto Berkner Bank, which suggests that Ronne-ISW preconditions Berkner-HSSW production. The negligible density difference between Berkner- and Ronne-mode waters indicates that each contributes cold dense shelf waters to protect FRIS against inflowing mWDW.
    Description: This study used samples and data provided by the Alfred Wegener Institute Helmholtz-Center for Polar- and Marine Research in Bremerhaven (Grant No. AWI-PS111_01). The authors thank Captain Schwarze and the crew of RV Polarstern for a very successful expedition. We acknowledge support from the EU Horizon 2020 grants 820575 (HHH, SØ) and 821001 (TK, SØ).
    Keywords: Ocean circulation ; Ocean-ice shelf interaction ; Water masses ; Weddell Sea ; Filcher and Ronne shelves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-11-07
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ryan, S., Hellmer, H. H., Janout, M., Darelius, E., Vignes, L., & Schroeder, M. Exceptionally warm and prolonged flow of warm deep water toward the Filchner-Ronne Ice Shelf in 2017. Geophysical Research Letters, 47(13),(2020): e2020GL088119, doi:10.1029/2020GL088119.
    Description: The Filchner‐Ronne Ice Shelf, fringing the southern Weddell Sea, is Antarctica's second largest ice shelf. At present, basal melt rates are low due to active dense water formation; however, model projections suggest a drastic increase in the future due to enhanced inflow of open‐ocean warm water. Mooring observations from 2014 to 2016 along the eastern flank of the Filchner Trough (76°S) revealed a distinct seasonal cycle with inflow if Warm Deep Water during summer and autumn. Here we present extended time series showing an exceptionally warm and long inflow in 2017, with maximum temperatures exceeding 0.5°C. Warm temperatures persisted throughout winter, associated with a fresh anomaly, which lead to a change in stratification over the shelf, favoring an earlier inflow in the following summer. We suggest that the fresh anomaly developed upstream after anomalous summer sea ice melting and contributed to a shoaling of the shelf break thermocline.
    Description: The authors would like to express their gratitude to the officers and crews of RV Polarstern (cruises PS92 [Grant AWI_PS82_02], PS96 [Grant AWI_PS96_01], and PS111 [Grant AWI_PS111_01]), RRS Ernest Shackleton (Cruise ES060), and RSS James Clark Ross (Cruise JR16004) for their efficient assistance. E. D. received funding from the project TOBACO (267660), POLARPROG, Norges Forskningsrd.
    Keywords: Ocean-ice shelf interaction ; Weddell Sea ; Warm inflow ; Antarctic Slope Front ; Filchner-Ronne Ice Shelf
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...