GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (10)
  • 2022  (10)
Document type
Keywords
Years
Year
  • 1
    Publication Date: 2024-02-07
    Description: We present a global atlas of downcore foraminiferal oxygen and carbon isotope ratios available at https://doi.org/10.1594/PANGAEA.936747 (Mulitza et al., 2021a). The database contains 2106 published and previously unpublished stable isotope downcore records with 361 949 stable isotope values of various planktic and benthic species of Foraminifera from 1265 sediment cores. Age constraints are provided by 6153 uncalibrated radiocarbon ages from 598 (47 %) of the cores. Each stable isotope and radiocarbon series is provided in a separate netCDF file containing fundamental metadata as attributes. The data set can be managed and explored with the free software tool PaleoDataView. The atlas will provide important data for paleoceanographic analyses and compilations, site surveys, or for teaching marine stratigraphy. The database can be updated with new records as they are generated, providing a live ongoing resource into the future.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: In this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) in combination with temperature, salinity, oxygen and nutrient concentrations to characterize the coastal (71-78 °W) and an oceanic (82-98 °W) water masses (SAAW-Subantarctic Surface Water; STW-Subtropical Water; ESSW-Equatorial Subsurface water; AAIW-Antarctic Intermediate Water; PDW-Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used to differentiate between SAAW-STW, SAAW-ESSW and ESSW-AAIW. δ13CDIC signatures can be used to differentiate between STW-ESSW (oceanic section), SAAW-ESSW, ESSW-AAIW and AAIW-PDW. Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and geometry of water masses above 1000 m. Previous paleoceanographic studies using marine sediments from the SEP continental margin used the present-day hydrological oceanic transect to compare against, as the coastal section was not sufficiently characterized. We suggest that our new results of the coastal section should be used for past characterizations of the SEP water masses that are usually based on continental margin sediment samples.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-31
    Description: In this study, we used stable isotopes of oxygen (δ18O), deuterium (δD), and dissolved inorganic carbon (δ13CDIC) in combination with temperature, salinity, oxygen, and nutrient concentrations to characterize the coastal (71°–78°W) and an oceanic (82°–98°W) water masses (SAAW—Subantarctic Surface Water; STW—Subtropical Water; ESSW—Equatorial Subsurface water; AAIW—Antarctic Intermediate Water; PDW—Pacific Deep Water) of the Southeast Pacific (SEP). The results show that δ18O and δD can be used to differentiate between SAAW-STW, SAAW-ESSW, and ESSW-AAIW. δ13CDIC signatures can be used to differentiate between STW-ESSW (oceanic section), SAAW-ESSW, ESSW-AAIW, and AAIW-PDW. Compared with the oceanic section, our new coastal section highlights differences in both the chemistry and geometry of water masses above 1,000 m. Previous paleoceanographic studies using marine sediments from the SEP continental margin used the present-day hydrological oceanic transect to compare against, as the coastal section was not sufficiently characterized. We suggest that our new results of the coastal section should be used for past characterizations of the SEP water masses that are usually based on continental margin sediment samples.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  EPIC3Geophysical Research Letters, American Geophysical Union (AGU), 49(24), ISSN: 0094-8276
    Publication Date: 2024-03-13
    Description: The East Australian Current (EAC) is the western boundary current of the South Pacific Subtropical Gyre that transports warm tropical waters to higher southern latitudes and significantly impacts the climate of Australia and New Zealand. Modern observations show that the EAC has strengthened with rising global temperatures. However, little is known about the pre-industrial variability of the EAC and the forcing mechanisms. Planktic foraminifera Globigerinoides ruber (white) Mg/Ca-based sea surface temperature reconstructions offshore northeastern Australia between 15° and 26°S reveal an increase by ∼1.2°C after ∼1400 CE. We infer that the increase in temperature is related to a stronger EAC heat transport that is likely driven by a strengthening of the Southern Hemisphere subtropical gyre circulation due to a progressive shift of the Southern annular mode toward its positive phase and of El Niño-Southern Oscillation toward more El Niño-like conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-25
    Description: Planktic foraminifera Globigerinoides ruber (white) Mg/Ca-based sea-surface temperature (SST) estimates from three sediment cores that were retrieved along along the East Australian Current (EAC) path between 15°S and 26°S off northeastern Australia were reconstructed in order to estimate changes in the EAC heat transport over the past 4000 years and its potential driving mechanisms. The analyzed sediments were recovered by multiple corers GeoB22202-1 (26°07.818'S, 153°59.366'E, water depth 965 m), GeoB22222-1 (17°17.698'S; 146°56.354'E, water depth 1168 m) and GeoB22230-2 (15°26.473'S, 145°52.198'E, water depth 968 m) during R/V SONNE cruise SO-256 in the Coral Sea, offshore NE Australia in 2017.
    Keywords: Center for Marine Environmental Sciences; Coral Sea; East Australian Current; MARUM; planktic foraminifera
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-06
    Description: Cores of marine site GeoB16602 (18.95°N, 113.71°E, water depth, 953 m) were recovered during the 2012 RV SONNE cruise SO-221 “INVERS”, northern South China Sea. Pollen samples were processed via standard hydrochloric-hydrofluoric acid procedure. Pollen and spore percentages were calculated based on the pollen sum (〉300 grains per sample) and spore sum (〉100 grains) respectively. The data set cover the whole last glacial cycle (140 kyr) with an average temporal resolution of ~600 years, revealing vegetation evolution history of the Pearl River catchment area in southern China. In general, the results reveal three different evolution patterns of vegetation at the tropical-subtropical flora ecotone: the zonal forest exhibited a clear glacial-interglacial cycle and weak response to stadial cooling; the fern communities exhibited similar glacial-interglacial variations but more sensitivity to low-amplitude temperature fluctuations; the glacial-interglacial trend in coastal wetland vegetation was ambiguous whereas a series of millennial-scale expansion events were closely related with sea-level rises.
    Keywords: Abies; Acanthaceae; Aceraceae; AGE; Alangiaceae; Alismataceae; Alnus; Altingiaceae; Amaryllidaceae; Anacardiaceae; Anthoceros; Antrophyaceae; Apocynaceae; Aquifoliaceae; Araliaceae; Artemisia; Asteraceae; Athyriaceae; Berberidaceae; Betula; Bignoniaceae; Campanulaceae; Caprifoliaceae; Carpinus; Carya; Caryophyllaceae; Castanopsis/Lithocarpus; Casuarinaceae; Center for Marine Environmental Sciences; cf. Cryptomeria; Chenopodiaceae/Amaranthaceae; Cibotium; Clerodendrum; Clusiaceae; COMPCORE; Composite Core; Coniogramme; Cruciferae; Cupressaceae; Cyathea; Cyperaceae; Dacrycarpus; Dacrydium; Dennstaedtiaceae; Depth, bottom/max; Depth, composite; Depth, top/min; Dicranopteris; Elaeagnaceae; Elaeocarpaceae; Ephedra; Ericaceae; Euphorbiaceae; Fagus; Ficus; Fraxinus; GC; GeoB16602; GeoB16602-3; GeoB16602-4; GeoB16602-5; Geraniaceae; Gesneriaceae; Glacial cycles; Gleicheniaceae; Grasses; Gravity corer; Hamamelidaceae; Heritiera; Hymenophyllaceae; INVERS; Juglans; Labiatae; Liliaceae; Lycopodiaceae; Lygodiaceae; Lythraceae cf. Lagerstroemia; Mallotus; Marine cores; MARUM; MeBo; MeBo (Meeresboden-Bohrgerät); Melastomataceae/Combretaceae; Meliaceae; Mimosaceae; Moraceae; MUC; MultiCorer; Myrica; Myrsinaceae; Myrtaceae; Nymphoides; Nyssa; Oleaceae; Oxalidaceae; Palmae; Papilionaceae; Parkeriaceae; Phyllocladaceae; Picea; Pinus; Pistacia; Poaceae; Podocarpaceae; Podocarpus; Pollen, other; Pollen, temperate; Pollen, tropical/subtropical; pollen and spores; Polygalaceae; Polygonaceae; Polypodiaceae; Proteaceae; Pteridaceae; Pterocarya; Quercus; Ranunculaceae; Rhizophora; Rosaceae; Rubiaceae; Rutaceae; Sapindaceae; Sapotaceae; Scrophulariaceae; sedges; Selaginella; SO221; Solanaceae; Sonne; Sonneratiaceae; South China Sea; Stenochlaena; Taxodiaceae; Thalictrum; Theaceae; Thymelaeaceae; Tilia; Trema; Tsuga; Typha; Ulmus; Verbenaceae
    Type: Dataset
    Format: text/tab-separated-values, 26324 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-25
    Keywords: Age; AGE; Calculated from Mg/Ca ratios (Anand et al., 2003); Center for Marine Environmental Sciences; Coral Sea; DEPTH, sediment/rock; East Australian Current; GeoB22230-2; Globigerinoides ruber white, Magnesium/Calcium ratio; ICP-OES (Agilent 5110 VDV, manual injection mode); MARUM; MUC; MultiCorer; planktic foraminifera; Sea surface temperature, annual mean; SO256; SO256_30-2; Sonne_2; TACTEAC
    Type: Dataset
    Format: text/tab-separated-values, 60 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-25
    Keywords: Age; AGE; Calculated from Mg/Ca ratios (Anand et al., 2003); Center for Marine Environmental Sciences; Coral Sea; DEPTH, sediment/rock; East Australian Current; GeoB22202-1; Globigerinoides ruber white, Magnesium/Calcium ratio; ICP-OES (Agilent 5110 VDV, manual injection mode); MARUM; MUC; MultiCorer; planktic foraminifera; Sea surface temperature, annual mean; SO256; SO256_2-1; Sonne_2; TACTEAC
    Type: Dataset
    Format: text/tab-separated-values, 88 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-01-25
    Keywords: Age; AGE; Calculated from Mg/Ca ratios (Anand et al., 2003); Center for Marine Environmental Sciences; Coral Sea; DEPTH, sediment/rock; East Australian Current; GeoB22222-1; Globigerinoides ruber white, Magnesium/Calcium ratio; ICP-OES (Agilent 5110 VDV, manual injection mode); MARUM; MUC; MultiCorer; planktic foraminifera; Sea surface temperature, annual mean; SO256; SO256_22-1; Sonne_2; TACTEAC
    Type: Dataset
    Format: text/tab-separated-values, 54 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-30
    Description: The application of stable oxygen isotopic ratio of surface dwelling Globigerinoides ruber (white variety) (δ¹⁸Oruber) to reconstruct past hydrological changes requires precise understanding of the effect of ambient parameters on δ¹⁸Oruber. The northern Indian Ocean, with huge freshwater influx and being a part of the Indo-Pacific Warm Pool, provides a unique setting to understand the effect of both the salinity and temperature on δ18Oruber. Here, we use a total of 400 surface samples (252 from this work and 148 from previous studies), covering the entire salinity end member region, to assess the effect of seawater salinity and temperature on δ¹⁸Oruber in the northern Indian Ocean. For δ¹⁸O analysis, 10-15 well preserved shells of Globigerinoides ruber white variety, were picked from 250-355 μm size range. The stable oxygen isotopic ratio was measured by using Finnigan MAT 253 isotope ratio mass spectrometer, coupled with Kiel IV automated carbonate preparation device. The precision of oxygen isotope measurements was better than 0.08‰. The analyzed surface δ¹⁸Oruber very well mimics the expected δ¹⁸O calcite estimated from the modern seawater parameters (temperature, salinity and seawater δ¹⁸O). We report a large diagenetic overprinting of δ18Oruber in the surface sediments with an increase of 0.18‰ per kilometer increase in water depth. The salinity exerts the major control on δ¹⁸Oruber (R2 = 0.63) in the northern Indian Ocean, with an increase of 0.29‰ per unit increase in salinity. The relationship between temperature and salinity corrected δ¹⁸Oruber (δ¹⁸Oruber - δ¹⁸Osw) in the northern Indian Ocean [T= -0.59*(δ¹⁸Oruber - δ¹⁸Osw) + 26.40] is different than reported previously based on the global compilation of plankton tow δ¹⁸Oruber data. The revised equations will help in better paleoclimatic reconstruction from the northern Indian Ocean.
    Keywords: 63KA; 905B; 93KL; A15558; A15612; AAS6GC-3; AAS6GC-6; AAS9_21; AAS9/21; AII15-596; AII15-597; AII15-612; All15-585; All15-586; All15-591; All15-592; Andaman Sea; Arabian Sea; BARP-9406; BARP-9407; BARP-9409; BARP-9412; BARP-9413; BARP-9415; BARP-9422; BARP-9426; BARP-9435; BARP-9437; BC; BC21WP7; BCR; Box corer; Box corer (Reineck); Core; CORE; DOD-200; DOD-201; DOD-204; DODO-197; Eastern Arabian Sea; Elevation of event; Event label; Foraminifera; GC; GEMINO I; Globigerinoides ruber; Globigerinoides ruber white, δ18O; Grab; GRAB; Gravity corer; Indian Ocean; IOE_143KK; KAL; Kasten corer; KL; KL-15, AS-03; KL-26, AS-02; KL-36, AS-04; KL-51, AS-07; KL-57, AS-08; KL-74, AS-12; KL-79; KL-87, AS-15; Latitude of event; Longitude of event; M5/3a; M5/3a_422QM; MAKRAN 2; Marion Dufresne (1972); Mass spectrometer MAT253; MD10; MD10-26; MD10-27; MD10-28; MD10-29; MD13; MD13-29; MD13-36; MD13-42; MD13-44; MD13-50; MD13-59; MD13-60; MD13-67; MD13-68; MD76-123; MD76-125; MD76-127; MD76-128; MD76-129; MD76-131; MD76-132; MD76-135; MD76-136; MD77-164; MD77-169; MD77-171; MD77-176; MD77-177; MD77-178; MD77-179; MD77-180; MD77-181; MD77-185; MD77-191; MD77-194; MD77-195; MD77-197; MD77-200; MD77-202; MD77-203; MD77-204; Meteor (1986); MUC; MultiCorer; NIOP_905; NIOP_929; NIOP-B0/C0; NIOP-C2; Northeastern Arabian Sea; northern Indian Ocean; ORKS_08; OSIRIS II; OSIRIS III; oxygen isotope; PAKOMIN; PC; Piston corer; Piston corer (BGR type); QM; Quantameter; RC12; RC12-328; RC12-329; RC12-331; RC12-339; RC12-340; RC12-341; RC12-343; RC12-344; RC12-347; RC14; RC14-35; RC14-36; RC14-37; RC14-39; RC17; RC17-126; RC9-155; RC9-161; RC9-162; Reference/source; Robert Conrad; RVG_167/1_3904; Sagar Kanya; Sample ID; sediment; Sindhu Sadhana; Sindhu Sankalp; Size fraction; SK117; SK117_SC_05; SK117_SC_08; SK117_SC_11; SK117_SC_12; SK117_SC_14; SK117_SC_15; SK117_SC_16; SK117_SC_17; SK117_SC_18; SK117_SC_19; SK117_SC_20; SK117_SC_23; SK117_SC_25; SK117_SC_26; SK117_SC_27; SK117_SC_30; SK117_SC_31; SK117_SC_32; SK117_SC_33; SK117_SC_34; SK117_SC_39; SK117_SC_40; SK117_SC_43; SK117_SC_44; SK117_SC_45; SK117_SC_46; SK117_SC_51; SK126-GC39; SK129-CR05; SK148-GC4; SK157_GC_12; SK157_GC_14; SK157_GC_20; SK157-GC04; SK157-GC18; SK168-GC01; SK17; SK175; SK175_GB_02; SK175_GB_102; SK175_GB_103; SK175_GB_105; SK175_GB_111; SK175_GB_113; SK175_GB_116; SK175_GB_117; SK175_GB_118; SK175_GB_119; SK175_GB_121; SK175_GB_122; SK175_GB_123; SK175_GB_125; SK175_GB_127; SK175_GB_128; SK175_GB_129; SK175_GB_14; SK175_GB_19; SK175_GB_26; SK175_GB_28; SK175_GB_29; SK175_GB_30; SK175_GB_31; SK175_GB_33; SK175_GB_41; SK175_GB_58; SK175_GB_59; SK175_GB_60; SK175_GB_76; SK175_GB_77; SK175_GB_83; SK175_GB_84; SK175_GB_85; SK175_GB_86; SK175_GB_87; SK175_GB_89; SK175_GB_90; SK175_GB_91; SK175_GB_92; SK175_GB_93; SK175_GB_94; SK175_GB_96; SK175_GB_98; SK175_GB_99; SK20-GC185; SK218_1; SK237; SK237_GC09; SK237_SC_03; SK237_SC_04; SK237_SC_05; SK237_SC_06; SK237_SC_07; SK237_SC_11; SK237_SC_12; SK237_SC_13; SK237_SC_14; SK237_SC_16; SK237_SC_21; SK237_SC_22; SK237_SC_23; SK237_SC_27; SK237_SC_29; SK237_SC_32; SK237_SC_33; SK237_SC_34; SK237_SC_36; SK237_SC_37; SK237_SC_42; SK237_SC_43; SK237_SC_44; SK237_SC_46; SK237_SC_47; SK308; SK308_MC-02; SK308_MC-03; SK308_MC-04; SK308_MC-05; SK308_MC-08; SK308_MC-12; SK308_MC-14; SK308_MC-16; SK308_MC-18; SK308_MC-19; SK308_MC-23; SK308_MC-35; SK308_MC-36; SK308_MC-37; SK308_MC-38; SK308_MC-39; SK308_MC-41; SK308_MC-43; SK308_MC-44; SK308_MC-45; SK308_MC-47; SK308_MC-51; SK308_MC-55; SK308_MC-58; SK308_MC-59; SK308_MC-61; SK308_MC-63; SK308_MC-64; SK308_MC-66; SK31_GC_11; SL-1; SL-4; SN-6; SO130; SO130_211KG; SO130_282KG; SO130_285MC; SO28; SO28-05KL; SO28-11KL; SO28-18KL; SO42; SO42-15KL; SO42-26KL; SO42-36KL; SO42-51KL; SO42-57KL; SO42-74KL; SO42-79KL; SO42-87KL; SO90; SO90_39KG; SO90_56KA; Sonne; Southeastern Arabian Sea; Southwestern Bay of Bengal; SPAC; Spade Corer; SS3827G; SSD004; SSD004_G-01; SSD004_G-02; SSD004_G-03; SSD004_G-04; SSD004_G-05; SSD004_MC-01; SSD004_MC-02; SSD004_MC-03; SSD004_MC-04; SSD004_MC-05; SSD004_MC-06; SSD004_MC-07; SSD004_MC-08; SSD004_MC-09; SSD004_MC-10; SSD004_MC-11; SSD004_MC-12; SSD004_MC-13; SSD004_MC-14; SSD004_MC-15; SSD004_MC-16; SSD004_MC-17; SSD004_MC-18; SSD004_MC-19; SSD004_MC-20; SSD004_MC-21; SSD004_MC-23; SSD004_MC-26; SSD004_MC-27; SSD004_MC-28; SSD004_MC-29; SSD004_MC-30; SSD004_MC-31; SSD004_MC-32; SSD004_MC-53; SSD004_MC-54; SSD004_MC-55; SSD004_MC-56; SSD004_MC-57; SSD004_MC-59; SSD004_MC-60; SSD055; SSD055_MC01; SSD055_MC02; SSD055_MC03; SSD055_MC04; SSD055_MC05; SSD055_MC06; SSD055_MC08; SSD055_MC09; SSD055_MC10; SSD055_MC11; SSD055_MC12; SSD067; SSD067_GR04; SSD067_GR05; SSD067_GR10; SSD067_GR11; SSD067_MC02; SSD067_MC04; SSD067_MC05; SSD067_MC06; SSD067_MC07; SSD067_MC08; SSD067_MC09; SSD067_MC10; SSD067_MC11; SSD067_MC12; SSD067_MC13; SSD067_MC14; SSD067_MC16; SSD067_MC17; SSD067_MC21; SSD067_MC22; SSD067_MC24; SSD067_MC26; SSD067_MC29; SSD067_MC30; SSD067_MC31; SSD067_MC32; SSD067_MC33; SSD067_MC34; SSD067_MC36; SSD067_MC37; SSD067_MC38; SSD067_MC41; SSD067_MC42; SSD067_MC43; SSD067_MC44; SSD067_MC45; SSD067_MC46; SSD067_MC47; SSD067_MC49; SSD067_MC50; SSD067_MC51; SSD067_MC53; SSD067_MC54; SSD067_MC55; SSD067_MC56; SSK35; SSK35_SPC-25; SSK35_SPC-26; SSK35_SPC-27; SSK35_SPC-28; SSK35_SPC-29; SSK35_SPC-32; SSK35_SPC-33; SSK35_SPC-34; SSK35_SPC-37; SSK35_SPC-39; SSK35_SPC-42; SSK35_SPC-43; SSK35_SPC-45; SSK98; SSK98_GR01; SSK98_GR02; SSK98_GR03; SSK98_GR04; SSK98_GR05; SSK98_GR06; SSK98_GR10; SSK98_SPC01; SSK98_SPC02; SSK98_SPC03; SSK98_SPC07; SSK98_SPC11; SSK98_SPC12; SSK98_SPC13; SSK98_SPC14; Surface; TN41_32MC; TN47_6GGC; Tyro; V14; V14-101; V14-103; V14-104; V14-106; V14-107; V14-108; V19; V19-176; V19-177; V19-178; V19-183; V19-185; V19-188; V29; V29-15; V29-19; V29-29; V29-30; V34; V34-80; V34-83; V34-85; V34-88; Vema; Western Bay of Bengal
    Type: Dataset
    Format: text/tab-separated-values, 1522 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...