GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2024  (9)
  • 2022  (9)
Keywords
Language
Years
Year
  • 1
    Keywords: Kunststoffabfall ; Meeresverschmutzung ; Artensterben
    Description / Table of Contents: Herausgeberinfo: A new report commissioned by WWF provides the most comprehensive account to date of the extent of plastic pollution in the world's oceans. comprehensive account of the extent of plastic pollution in the oceans. oceans, its impact on marine species and ecosystems, and how these trends are and the likely development of these trends in the future.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (221 Seiten) , Illustrationen
    ISBN: 9783946211464
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: A new report commissioned by WWF provides the most comprehensive account to date of the extent to which plastic pollution is affecting the global ocean, the impacts it’s having on marine species and ecosystems, and how these trends are likely to develop in future. The report by researchers from the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) reveals a serious and rapidly worsening situation that demands immediate and concerted international action: ● Today almost every species group in the ocean has encountered plastic pollution, with scientists observing negative effects in almost 90% of assessed species. ● Not only has plastic pollution entered the marine food web, it is significantly affecting the productivity of some of the world’s most important marine ecosystems like coral reefs and mangroves. ● Several key global regions – including areas in the Mediterranean, the East China and Yellow Seas and Arctic sea ice – have already exceeded plastic pollution thresholds beyond which significant ecological risks can occur, and several more regions are expected to follow suit in the coming years. ● If all plastic pollution inputs stopped today, marine microplastic levels would still more than double by 2050 – and some scenarios project a 50-fold increase by 2100.
    Type: Book , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-16
    Description: Data on infauna and sediment characteristics were collected as part of an extensive research program on the effects of offshore wind turbines on the marine environment funded by the German Federal Maritime and Hydrographic Agency. The investigations were performed in the first German offshore wind farm alpha ventus in the German Bight (North Sea). The overall aim of the program was to evaluate the German national standard concept for environmental impact assessments for offshore wind farms. Specifically, our study addressed the potential changes of the infauna communities in different distances from single turbines in an early stage of the operational phase of the wind farm. The data were collected during the cruises HE296 (2008), HE313 (2009), HE340 (2010) and HE369 (2011) of the German research vessel RV HEINCKE. Infauna samples were taken with van Veen grab samples (sampling area: 0.1 m2, weight: 95 kg) inside the wind farm and in two reference sites outside the wind farm. Three replicate samples were taken at each station. The samples were sieved through a 1 mm mesh and species of the macro-infauna were determined to the lowest taxonomic level possible. Sub-samples of the sediments were fractionated in a cascade of sieves of different mesh sizes to determine the grain size distributions. The organic contents of the sediments were determined as weight loss on ignition. The dataset comprises 11,400 count and biomass records for 103 infaunal taxa (89 % on species level, 11 % others) from 528 samples. Sediments were characterised for 176 van Veen grabs.
    Keywords: Area/locality; Biomass, wet mass; Counts; DATE/TIME; DEPTH, water; Event label; Gear; HE296; HE296/865-1; HE296/865-2; HE296/865-3; HE296/866-2; HE296/866-3; HE296/866-4; HE296/867-2; HE296/867-3; HE296/867-4; HE296/868-1; HE296/868-2; HE296/868-3; HE296/903-1; HE296/903-2; HE296/904-1; HE296/905-1; HE296/905-2; HE296/905-4; HE296/906-2; HE296/906-3; HE296/906-4; HE296/907-2; HE296/907-3; HE296/907-4; HE296/908-2; HE296/908-3; HE296/908-4; HE296/912-1; HE296/912-3; HE296/912-4; HE296/913-1; HE296/913-3; HE296/913-4; HE296/914-1; HE296/914-3; HE296/914-4; HE296/915-2; HE296/915-3; HE296/915-4; HE296/916-2; HE296/916-3; HE296/916-4; HE296/917-1; HE296/917-2; HE296/917-3; HE296/918-1; HE296/918-2; HE296/918-4; HE296/919-1; HE296/919-3; HE296/919-4; HE296/920-1; HE296/920-2; HE296/920-3; HE296/921-1; HE296/921-3; HE296/921-4; HE296/923-1; HE296/923-2; HE296/923-3; HE296/924-1; HE296/924-2; HE296/924-3; HE296/925-1; HE296/925-2; HE296/925-3; HE296/926-1; HE296/926-3; HE296/926-4; HE296/927-2; HE296/927-3; HE296/927-4; HE296/928-1; HE296/928-3; HE296/928-4; HE296/929-1; HE296/929-2; HE296/929-3; HE296/930-1; HE296/930-2; HE296/930-3; HE296/931-1; HE296/931-2; HE296/931-3; HE296/932-1; HE296/932-3; HE296/932-4; HE296/933-1; HE296/933-2; HE296/933-4; HE296/934-1; HE296/934-2; HE296/934-3; HE296/935-1; HE296/935-2; HE296/935-4; HE296/936-1; HE296/936-2; HE296/936-3; HE296/949-1; HE296/949-2; HE296/949-3; HE296/950-1; HE296/950-2; HE296/950-4; HE296/951-1; HE296/951-3; HE296/951-4; HE296/952-1; HE296/952-3; HE296/952-4; HE296/953-1; HE296/953-2; HE296/953-3; HE296/954-1; HE296/954-2; HE296/954-3; HE296/955-1; HE296/955-2; HE296/955-4; HE296/956-1; HE296/956-2; HE296/956-3; HE296/965-1; HE296/965-2; HE296/965-3; HE296/992-1; HE296/992-3; HE296/992-4; HE296/993-2; HE296/993-3; HE296/993-4; HE313; HE313/916-2; HE313/916-3; HE313/916-4; HE313/917-2; HE313/917-3; HE313/917-4; HE313/918-2; HE313/918-3; HE313/918-4; HE313/919-2; HE313/919-3; HE313/919-4; HE313/920-2; HE313/920-3; HE313/920-4; HE313/921-1; HE313/921-4; HE313/922-2; HE313/922-3; HE313/922-4; HE313/923-2; HE313/923-3; HE313/923-4; HE313/924-2; HE313/924-3; HE313/924-4; HE313/925-2; HE313/925-3; HE313/925-4; HE313/926-2; HE313/926-3; HE313/926-4; HE313/927-2; HE313/927-3; HE313/927-4; HE313/928-2; HE313/928-3; HE313/928-4; HE313/929-2; HE313/929-3; HE313/929-4; HE313/930-2; HE313/930-3; HE313/930-4; HE313/931-2; HE313/931-3; HE313/931-4; HE313/932-2; HE313/932-3; HE313/932-4; HE313/933-2; HE313/933-3; HE313/933-4; HE313/934-2; HE313/934-3; HE313/934-4; HE313/935-2; HE313/935-3; HE313/935-4; HE313/936-2; HE313/936-3; HE313/936-4; HE313/941-2; HE313/941-3; HE313/941-4; HE313/942-2; HE313/942-3; HE313/942-4; HE313/943-2; HE313/943-3; HE313/943-4; HE313/944-2; HE313/944-3; HE313/944-4; HE313/945-2; HE313/945-3; HE313/945-4; HE313/946-2; HE313/946-3; HE313/946-4; HE313/947-2; HE313/947-3; HE313/947-4; HE313/948-2; HE313/948-3; HE313/948-4; HE313/955-2; HE313/955-3; HE313/955-4; HE313/956-2; HE313/956-3; HE313/956-4; HE313/957-2; HE313/957-3; HE313/957-4; HE313/958-2; HE313/958-3; HE313/958-4; HE313/959-2; HE313/959-3; HE313/959-4; HE313/960-2; HE313/960-3; HE313/960-4; HE313/961-2; HE313/961-3; HE313/961-4; HE313/962-2; HE313/962-3; HE313/962-4; HE313/963-2; HE313/963-3; HE313/963-4; HE313/964-2; HE313/964-3; HE313/964-4; HE313/965-2; HE313/965-3; HE313/965-4; HE313/966-2; HE313/966-3; HE313/966-4; HE313/967-2; HE313/967-3; HE313/967-4; HE313/968-2; HE313/968-3; HE313/968-4; HE313/969-2; HE313/969-3; HE313/969-4; HE340; HE340/03-2; HE340/03-3; HE340/03-4; HE340/04-2; HE340/04-3; HE340/04-4; HE340/05-2; HE340/05-3; HE340/05-4; HE340/06-2; HE340/06-3; HE340/06-4; HE340/07-2; HE340/07-3; HE340/07-4; HE340/08-2; HE340/08-3; HE340/08-4; HE340/09-2; HE340/09-3; HE340/09-4; HE340/10-2; HE340/10-3; HE340/10-4; HE340/11-2; HE340/11-3; HE340/11-4; HE340/12-2; HE340/12-3; HE340/12-4; HE340/13-2; HE340/13-3; HE340/13-4; HE340/14-2; HE340/14-3; HE340/14-4; HE340/15-2; HE340/15-3; HE340/15-4; HE340/16-2; HE340/16-3; HE340/16-4; HE340/17-2; HE340/17-3; HE340/17-4; HE340/18-2; HE340/18-3; HE340/18-4; HE340/19-2; HE340/19-3; HE340/19-4; HE340/20-2; HE340/20-3; HE340/20-4; HE340/21-2; HE340/21-3; HE340/21-4; HE340/22-2; HE340/22-3; HE340/22-4; HE340/23-2; HE340/23-3; HE340/23-4; HE340/24-2; HE340/24-3; HE340/24-4; HE340/25-2; HE340/25-3; HE340/25-4; HE340/26-2; HE340/26-3; HE340/26-4; HE340/27-2; HE340/27-3; HE340/27-4; HE340/47-2; HE340/47-3; HE340/47-4; HE340/48-2; HE340/48-3; HE340/48-4; HE340/49-2; HE340/49-3; HE340/49-4; HE340/50-2; HE340/50-3; HE340/50-4; HE340/51-2; HE340/51-3; HE340/51-4; HE340/56-2; HE340/56-3; HE340/56-4; HE340/57-2; HE340/57-3; HE340/57-4; HE340/58-2; HE340/58-3; HE340/58-4; HE340/59-2; HE340/59-3; HE340/59-4; HE340/60-2; HE340/60-3; HE340/60-4; HE340/61-2; HE340/61-3; HE340/61-4; HE340/62-2; HE340/62-3; HE340/62-4; HE340/63-2; HE340/63-3; HE340/63-4; HE340/64-2; HE340/64-3; HE340/64-4; HE340/65-2; HE340/65-3; HE340/65-4; HE340/66-2; HE340/66-3; HE340/66-4; HE340/67-2; HE340/67-3; HE340/67-4; HE340/73-2; HE340/73-3; HE340/73-4; HE340/74-2; HE340/74-3; HE340/74-4; HE369; HE369/001-2; HE369/001-3; HE369/001-4; HE369/002-1; HE369/003-1; HE369/004-1; HE369/005-1; HE369/006-1; HE369/007-1; HE369/008-1; HE369/009-1; HE369/010-1; HE369/011-1; HE369/012-1; HE369/015-1; HE369/016-1; HE369/017-1; HE369/018-1; HE369/023-2; HE369/023-3; HE369/023-4; HE369/024-1; HE369/025-1; HE369/026-1; HE369/027-1; HE369/028-1; HE369/029-1; HE369/030-1; HE369/031-1; HE369/032-1; HE369/033-1; HE369/034-1; HE369/035-1; HE369/036-1; HE369/058-1; HE369/059-1; HE369/060-1; HE369/061-1; HE369/062-1; HE369/063-1; HE369/064-1; HE369/065-1; HE369/066-1; HE369/067-1; HE369/068-1; HE369/069-1; HE369/070-1; HE369/071-1; Heincke; LATITUDE; LONGITUDE; North Sea; Penetration depth; Project; Replicate; Scientific name; van Veen Grab; VGRAB
    Type: Dataset
    Format: text/tab-separated-values, 90465 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-16
    Description: Data on infauna and sediment characteristics were collected as part of an extensive research program on the effects of offshore wind turbines on the marine environment funded by the German Federal Maritime and Hydrographic Agency. The investigations were performed in the first German offshore wind farm alpha ventus in the German Bight (North Sea). The overall aim of the program was to evaluate the German national standard concept for environmental impact assessments for offshore wind farms. Specifically, our study addressed the potential changes of the infauna communities in different distances from single turbines in an early stage of the operational phase of the wind farm. The data were collected during the cruises HE296 (2008), HE313 (2009), HE340 (2010) and HE369 (2011) of the German research vessel RV HEINCKE. Infauna samples were taken with van Veen grab samples (sampling area: 0.1 m2, weight: 95 kg) inside the wind farm and in two reference sites outside the wind farm. Three replicate samples were taken at each station. The samples were sieved through a 1 mm mesh and species of the macro-infauna were determined to the lowest taxonomic level possible. Sub-samples of the sediments were fractionated in a cascade of sieves of different mesh sizes to determine the grain size distributions. The organic contents of the sediments were determined as weight loss on ignition. The dataset comprises 11,400 count and biomass records for 103 infaunal taxa (89 % on species level, 11 % others) from 528 samples. Sediments were characterised for 176 van Veen grabs.
    Keywords: Area/locality; Campaign; DATE/TIME; Event label; HE296; HE296/865-1; HE296/866-1; HE296/867-1; HE296/868-1; HE296/904-1; HE296/905-1; HE296/906-1; HE296/907-1; HE296/908-1; HE296/912-1; HE296/913-1; HE296/914-1; HE296/915-1; HE296/916-1; HE296/917-1; HE296/918-1; HE296/919-1; HE296/920-1; HE296/921-1; HE296/923-1; HE296/924-1; HE296/925-1; HE296/926-1; HE296/927-1; HE296/928-1; HE296/929-2; HE296/930-1; HE296/931-1; HE296/932-1; HE296/933-1; HE296/934-1; HE296/935-1; HE296/936-1; HE296/949-1; HE296/950-1; HE296/951-1; HE296/952-3; HE296/953-1; HE296/954-1; HE296/955-1; HE296/956-2; HE296/965-1; HE296/992-1; HE296/993-1; HE313; HE313/916-1; HE313/917-1; HE313/918-1; HE313/919-1; HE313/920-1; HE313/921-1; HE313/922-1; HE313/924-1; HE313/925-1; HE313/926-1; HE313/927-1; HE313/928-1; HE313/929-1; HE313/930-1; HE313/931-1; HE313/932-1; HE313/933-1; HE313/934-1; HE313/935-1; HE313/936-1; HE313/941-1; HE313/942-1; HE313/943-1; HE313/944-1; HE313/945-1; HE313/946-1; HE313/947-1; HE313/948-1; HE313/955-1; HE313/956-1; HE313/957-1; HE313/958-1; HE313/959-1; HE313/960-1; HE313/961-1; HE313/962-1; HE313/963-1; HE313/964-1; HE313/965-1; HE313/966-1; HE313/967-1; HE313/968-1; HE313/969-1; HE340; HE340/03-1; HE340/04-1; HE340/05-1; HE340/06-1; HE340/07-1; HE340/08-1; HE340/09-1; HE340/10-1; HE340/11-1; HE340/12-1; HE340/13-1; HE340/14-1; HE340/15-1; HE340/16-1; HE340/17-1; HE340/18-1; HE340/19-1; HE340/20-1; HE340/21-1; HE340/22-1; HE340/23-1; HE340/24-1; HE340/25-1; HE340/26-1; HE340/27-1; HE340/47-1; HE340/48-1; HE340/49-1; HE340/50-1; HE340/51-1; HE340/56-1; HE340/57-1; HE340/58-1; HE340/59-1; HE340/60-1; HE340/61-1; HE340/62-1; HE340/63-1; HE340/64-1; HE340/65-1; HE340/66-1; HE340/67-1; HE340/73-1; HE340/74-1; HE369; HE369/001-1; HE369/002-1; HE369/003-1; HE369/004-1; HE369/005-1; HE369/006-1; HE369/007-1; HE369/008-1; HE369/009-1; HE369/010-1; HE369/011-1; HE369/012-1; HE369/015-1; HE369/016-1; HE369/017-1; HE369/018-1; HE369/023-1; HE369/024-1; HE369/025-1; HE369/026-1; HE369/027-1; HE369/028-1; HE369/029-1; HE369/030-1; HE369/031-1; HE369/032-1; HE369/033-1; HE369/034-1; HE369/035-1; HE369/036-1; HE369/058-1; HE369/059-1; HE369/060-1; HE369/061-1; HE369/062-1; HE369/063-1; HE369/064-1; HE369/065-1; HE369/066-1; HE369/067-1; HE369/068-1; HE369/069-1; HE369/070-1; HE369/071-1; Heincke; LATITUDE; LONGITUDE; Loss on ignition; mesh sieved; North Sea; Project; Replicate; Sample mass; Sample method; Size fraction 〈 0.063 mm, mud, silt+clay; Size fraction 〉 0.063 mm, sand; Size fraction 〉 0.125 mm; Size fraction 〉 0.250 mm; Size fraction 〉 0.500 mm, gravel; Size fraction 〉 1 mm, gravel; Size fraction 〉 2 mm, gravel; Station label; van Veen Grab; VGRAB
    Type: Dataset
    Format: text/tab-separated-values, 2640 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-16
    Description: Data on infauna and sediment characteristics were collected as part of an extensive research program on the effects of offshore wind turbines on the marine environment funded by the German Federal Maritime and Hydrographic Agency. The investigations were performed in the first German offshore wind farm alpha ventus in the German Bight (North Sea). The overall aim of the program was to evaluate the German national standard concept for environmental impact assessments for offshore wind farms. Specifically, our study addressed the potential changes of the infauna communities in different distances from single turbines in an early stage of the operational phase of the wind farm. The data were collected during the cruises HE296 (2008), HE313 (2009), HE340 (2010) and HE369 (2000) of the German research vessel RV Heincke. Infauna samples were taken with van Veen grab samples (sampling area: 0.1 m2, weight: 95 kg) inside the wind farm and in two reference sites outside the wind farm. Three replicate samples were taken at each station. The samples were sieved through a 1 mm mesh and species of the macro-infauna were determined to the lowest taxonomic level possible. Sub-samples of the sediments were fractionated in a cascade of sieves of different mesh sizes to determine the grain size distributions. The organic contents of the sediments were determined as weight loss on ignition. The dataset comprises 11,400 count and biomass records for 103 infaunal taxa (89 % on species level, 11 % others) from 528 samples. Sediments were characterised for 176 van Veen grabs.
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-20
    Description: Bio-degradation assays were performed for bio-based plastics under environmentally relevant temperature between 5 and 30 °C using pH Stat titration. Suspensions of bio-based microparticles were incubated with different hydrolytic enzymes, a lipase from Candida antarctica, an esterase from Bacillus subtilis and a protease from Bacillus licheniformis. Rates of hydrolysis, as determined by counter-titration with a diluted base (NaOH), was recorded for two hours. The thermal profiles of plastic hydrolysis by all three enzymes were investigated. All measurements were conducted under controlled laboratory conditions.
    Keywords: Binary Object; Binary Object (File Size); bio-degradation; BIO-PLASTICS_EUROPE; Developing and Implementing Sustainability-Based Solutions for Bio-Based Plastic Production and Use to Preserve Land and Sea Environmental Quality in Europe; enzymes; File content; Hydrolysis; plastic; Polymer; temperature profiles; Use
    Type: Dataset
    Format: text/tab-separated-values, 72 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  EPIC3Frontiers in Marine Science, 9(933768), ISSN: 2296-7745
    Publication Date: 2023-06-21
    Description: Floating marine debris is ubiquitous in marine environments but knowledge about quantities in remote regions is still limited. Here, we present the results of an extensive survey of floating marine debris by experts, trained scientists from fields other than pollution or non-professional citizen scientists. A total of 276 visual ship-based surveys were conducted between 2015 and 2020 in the Northeast (NE) Atlantic from waters off the Iberian Peninsula to the Central Arctic, however, with a focus on Arctic waters. Spatiotemporal variations among regional seas (Central Arctic, Barents Sea, Greenland Sea, Norwegian Sea, North Sea) and oceanic regions (Arctic waters and the temperate NE Atlantic) were explored. The overall median debris concentration was 11 items km-2, with considerable variability. The median concentration was highest in the North Sea with 19 items km-2. The Nordic seas, except the Central Arctic showed median concentrations ranging from 9 to 13 items km-2. Plastic accounted for 91% of all floating items. Miscellaneous fragments, films, ropes and nets, packaging materials, expanded polystyrene and straps were the most frequently observed plastic types. Although the median debris concentration in the Central Arctic was zero, this region was not entirely free of floating debris. The variations between regional seas and oceanic regions were statistically not significant indicating a continuous supply by a northward transportation of floating debris. The data show a slight annual decrease and clear seasonal differences in debris concentrations with higher levels observed during summer. A correlation between debris concentrations and environmental and spatial variables was found, explaining partly the variability in the observations. Pollution levels were 500 times lower than those recorded on the seafloor indicating the seafloor as a sink for marine debris. The Arctic was characterised by similar pollution levels as regions in temperate latitudes highlighting that Arctic ecosystems face threats from plastic pollution, which add to the effects of rapid climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-21
    Description: In 1999 the AWI established the HAUSGARTEN observatory, to assess the impact of climate change on Arctic ecosystems in Fram Strait (Arctic), which included repeated camera transects to assess changes on the deep Arctic seafloor. A first analysis of the footage highlighted that marine debris increased over time. Plastic debris was also sighted during sea surface observations for seabird surveys. This prompted us to add a pollution observatory to the ongoing research programme FRAM, aiming to quantify plastic pollution in different ecosystem compartments to identify hidden sinks. Here, we summarise the results of this work encompassing matrices such as snow, sea ice, surface waters, water column, deep seafloor, biota and Arctic beaches. Images from the deep seafloor taken since 2002 showed a marine debris concentration of 4,571 ± 1,628 items km-2, which is in range with polluted oceanic regions. Visual surveys of floating debris from the same region revealed 500 times lower concentrations (9 items km-2), showing that the deep Arctic seafloor constitutes a sink for marine debris. Quantities of 9–483 g m-2 were reported from 15 beach surveys on Svalbard by citizen scientists. Plastics accounted for 〉80% of the mass, primarily from fisheries. Microplastics in samples from the sea surface, water column, sediment, sea ice and snow were analysed by combining state-of–the-art sampling technology with µFT-IR analyses. Using the same analysis for samples from different ecosystem compartments enabled us to determine the vertical distribution of microplastics, as sea ice entrains extremely high microplastic concentrations, which are released to the underlying waters during ice melts. In-situ pump-filtrations throughout the water column revealed that microplastics prevail at all depths in Fram Strait (0–1,287 items m–3). Microplastic concentrations in sediments ranged from 239–13,331 N kg–1. Highest microplastics concentrations in sediments and the water column were measured close to the marginal ice zone and polymer compositions indicated a sea ice origin for most particles found in the deep waters of East Greenland, indicating sea ice as a temporal sink. Indeed, the highest concentration (1.2 ± 1.4) ×107 items m-3) was recorded in an ice core from pack ice of Fram Strait. The presence of microplastic in snow samples from ice floes indicates atmospheric deposition of microplastics. Recent research shows that resident zooplankton ingests microplastics, which were also found in the ice algae Melosira arctica. The data indicate that the seafloor and sea ice constitute (temporal) sinks of plastic pollution and that pollution levels are high, despite of the distance to sources. The receding sea ice has already led to increased anthropogenic pressure in the Fram Strait, which is likely to become a major shipping lane during summer. The number of fishers operating around Svalbard and of ship calls to Longyearbyen has already increased significantly. In addition, the prevailing hydrography promotes the transport of plastic pollutants from distant sources, mostly from the Atlantic Ocean, but also from the Central Arctic via the Transpolar Drift. Long-range atmospheric transport and deposition likely adds to this.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-06-21
    Description: Die Be­las­tung un­se­rer Mee­re und Ozea­ne mit Müll ist ein Um­welt­pro­blem glo­ba­len Aus­ma­ßes. Es wird pro­gnos­ti­ziert, dass der jähr­li­che glo­ba­le Ein­trag von land­ba­sier­tem Kunst­stoff­müll von rund 8 Mil­lio­nen Ton­nen im Jahr 2010 auf bis zu 100–250 Mil­lio­nen Ton­nen im Jahr 2025 an­stei­gen wird. 99% al­ler See­vo­gel-Ar­ten sol­len bis 2050 Plas­tik­müll ver­zeh­ren, heute sind es bereits ca. 90%. Wir wis­sen mitt­ler­wei­le, dass hier ein Um­welt­pro­blem glo­ba­len Aus­ma­ßes ent­stan­den ist, das nicht nur die Na­tur be­droht, son­dern auch Aus­wir­kun­gen auf den Men­schen ha­ben wird. Zu den bio­lo­gi­schen Ef­fek­ten kom­men so­zio-öko­no­mi­sche Aus­wir­kun­gen, wie Ein­bu­ßen im Tou­ris­mus, aber auch die un­mit­tel­ba­re Be­schä­di­gung in­dus­tri­el­ler An­la­gen und Kos­ten durch See­notret­tung. Seit 1999 be­treibt das Al­fred-We­ge­ner-In­sti­tut Lang­zeit­un­ter­su­chun­gen am Tief­see-Ob­ser­va­to­ri­um HAUS­GAR­TEN in der Ark­tis. Re­gel­mä­ßig wie­der­hol­te Auf­nah­men mit ei­ner ge­schlepp­ten Ka­me­ra zei­gen, dass der Mee­res­grund der ark­ti­schen Tief­see seit 2002 im­mer mehr Müll be­her­bergt. Auch an den Strän­den Spitz­ber­gens wird mitt­ler­wei­le an­ge­schwemm­ter Müll ein­ge­sam­melt. Un­se­re Un­ter­su­chun­gen zei­gen, dass gro­ße Men­gen von Mi­kro­plas­tik in das Meer­eis, Schnee und die Se­di­men­te der Tief­see ge­langt sind. In die­sem Vor­trag wird ein Aus­blick über die Er­geb­nis­se ge­zeigt und die Ur­sa­chen dis­ku­tiert.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...