GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Kunststoffabfall ; Meeresverschmutzung ; Artensterben
    Description / Table of Contents: Herausgeberinfo: A new report commissioned by WWF provides the most comprehensive account to date of the extent of plastic pollution in the world's oceans. comprehensive account of the extent of plastic pollution in the oceans. oceans, its impact on marine species and ecosystems, and how these trends are and the likely development of these trends in the future.
    Type of Medium: Online Resource
    Pages: 1 Online-Ressource (221 Seiten) , Illustrationen
    ISBN: 9783946211464
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-25
    Description: Plastic pollution has become an increasing environmental threat, and means to mitigate it need to be developed. Since Taiwan has introduced numerous policies to reduce plastic use and pollution, we here review the strategies, actions, and policies by Taiwan’s stakeholders to reduce plastic use and pollution. The information was obtained through a literature review and expert knowledge. We first provide some historical background about the development of environmental issues in Taiwan over the last few decades. We then review the main contributions of each stakeholder (ENGOs, media, government, and industry) to the plastic pollution problem during Taiwan’s last three national governments. During the 2000–2008 government phase, ENGOs learned cleanup, monitoring, and outreach methods which they used to raise public awareness. The 2008–2016 government phase was characterized by ENGOs learning more scientific methods and increasing public outreach. The media began to report on this issue, while the government drifted with few responses. The current government phase has been characterized by continued ENGO activities and a sudden explosion of media interest; this coincided with a much more active and positive government approach which culminated in an ambitious, unprecedented, and wide-ranging 10-year Action Plan which should greatly advance source reduction and removal of plastic waste, scientific monitoring and research, and public outreach. Due to the long-time efforts by ENGOs to influence other stakeholders, Taiwan has become a relatively successful example of how to tackle the plastic pollution problem which may inspire a more concerted effort by other governments using Taiwan as a blueprint.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-14
    Description: Coronavirus disease 2019 (COVID-19) characterized by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created serious concerns about its potential adverse effects. There are limited data on clinical, radiological, and neonatal outcomes of pregnant women with COVID-19 pneumonia. This study aimed to assess clinical manifestations and neonatal outcomes of pregnant women with COVID-19.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-03-05
    Description: The Anthropocene causes many massive and novel impacts, e.g., on migratory birds and their habitats. Many species of migratory birds have been declining on the Palearctic-African flyway in recent decades. To investigate possible impacts on a continental scale, we used 18 predictors extracted from 16 publicly available GIS layers in combination with machine learning methods on the sub-Saharan distributions of 64 passerine migrant species. These bird species were categorized as having experienced a ‘large decline’ (n = 12), a ‘moderate decline’ (n = 6) or ‘no decline’ (n = 46) based on European census data from 1970-1990. Therefore, we present the first study for these species which uses publically available Open Access GIS-data and a multivariate (n = 18) and multi-species (n = 64) machine learning approach to deduce possible past impacts. We furthermore modelled likely future human population change and climate change impacts. We identified three predictor themes related to the distributions and declines of these migratory birds: (I) locations, represented by African ecosystems, countries, and soil types; (II) human population pressures and land-use intensities, the latter represented by land-use categories, habitat area, and cropland proportion; (III) climatic predictors. This is the first study to relate migratory bird declines to human population pressures and land-use intensities using this type of analysis. We also identified areas of conservation concern, such as the Sahel region. Our models also predict that the declining trends of migratory birds will continue into the foreseeable future across much of Africa. We then briefly discuss some wider conservation implications in the light of the increasing drivers of biodiversity change associated with the Anthropocene as well as some possible solutions. We argue that only comprehensive systemic change can mitigate the impacts on the migratory birds and their habitats.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-26
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-26
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-25
    Description: A new report commissioned by WWF provides the most comprehensive account to date of the extent to which plastic pollution is affecting the global ocean, the impacts it’s having on marine species and ecosystems, and how these trends are likely to develop in future. The report by researchers from the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI) reveals a serious and rapidly worsening situation that demands immediate and concerted international action: ● Today almost every species group in the ocean has encountered plastic pollution, with scientists observing negative effects in almost 90% of assessed species. ● Not only has plastic pollution entered the marine food web, it is significantly affecting the productivity of some of the world’s most important marine ecosystems like coral reefs and mangroves. ● Several key global regions – including the Mediterranean, the East China and Yellow Seas and Arctic sea ice – have already exceeded plastic pollution thresholds beyond which significant ecological risks can occur, and several more regions are expected to follow suit in the coming years. ● If all plastic pollution inputs stopped today, marine microplastic levels would still more than double by 2050 – and some scenarios project a 50-fold increase by 2100.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Other , notRev
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  EPIC3Equity Perspectives on Global Ocean Law and Governance Conference, Warburg-Haus, Hamburg, 2022-09-07-2022-09-07
    Publication Date: 2022-10-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-06-21
    Description: Plastic pollution is now a worldwide phenomenon affecting all marine ecosystems, but some ecosystems and regions remain understudied. Here, we review the presence and impacts of macroplastics and microplastics for four such ecosystems: mangroves, seagrass meadows, the Arctic Ocean and the deep seafloor. Plastic production has grown steadily, and thus the impact on species and ecosystems has increased, too. The accumulated evidence also indicates that plastic pollution is an additional and increasing stressor to these already ecosystems and many of the species living in them. However, laboratory or field studies, which provide strong correlational or experimental evidence of ecological harm due to plastic pollution remain scarce or absent for these ecosystems. Based on these findings, we give some research recommendations for the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-21
    Description: Die Be­las­tung un­se­rer Mee­re und Ozea­ne mit Müll ist ein Um­welt­pro­blem glo­ba­len Aus­ma­ßes. Es wird pro­gnos­ti­ziert, dass der jähr­li­che glo­ba­le Ein­trag von land­ba­sier­tem Kunst­stoff­müll von rund 8 Mil­lio­nen Ton­nen im Jahr 2010 auf bis zu 100–250 Mil­lio­nen Ton­nen im Jahr 2025 an­stei­gen wird. 99% al­ler See­vo­gel-Ar­ten sol­len bis 2050 Plas­tik­müll ver­zeh­ren, heute sind es bereits ca. 90%. Wir wis­sen mitt­ler­wei­le, dass hier ein Um­welt­pro­blem glo­ba­len Aus­ma­ßes ent­stan­den ist, das nicht nur die Na­tur be­droht, son­dern auch Aus­wir­kun­gen auf den Men­schen ha­ben wird. Zu den bio­lo­gi­schen Ef­fek­ten kom­men so­zio-öko­no­mi­sche Aus­wir­kun­gen, wie Ein­bu­ßen im Tou­ris­mus, aber auch die un­mit­tel­ba­re Be­schä­di­gung in­dus­tri­el­ler An­la­gen und Kos­ten durch See­notret­tung. Seit 1999 be­treibt das Al­fred-We­ge­ner-In­sti­tut Lang­zeit­un­ter­su­chun­gen am Tief­see-Ob­ser­va­to­ri­um HAUS­GAR­TEN in der Ark­tis. Re­gel­mä­ßig wie­der­hol­te Auf­nah­men mit ei­ner ge­schlepp­ten Ka­me­ra zei­gen, dass der Mee­res­grund der ark­ti­schen Tief­see seit 2002 im­mer mehr Müll be­her­bergt. Auch an den Strän­den Spitz­ber­gens wird mitt­ler­wei­le an­ge­schwemm­ter Müll ein­ge­sam­melt. Un­se­re Un­ter­su­chun­gen zei­gen, dass gro­ße Men­gen von Mi­kro­plas­tik in das Meer­eis, Schnee und die Se­di­men­te der Tief­see ge­langt sind. In die­sem Vor­trag wird ein Aus­blick über die Er­geb­nis­se ge­zeigt und die Ur­sa­chen dis­ku­tiert.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...