GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2024-02-16
    Beschreibung: The 3D seismic cube is in SEG-Y format with SP in byte 5, inline number in byte 25 and xline number in byte 17. Processing includes repositioning, time migration and depth conversion using a smoothed velocity field based on Berndt et al., 2019. Acquisition parameters are discussed in the SO227 cruise report (Berndt et al., 2013).
    Schlagwort(e): Depth; File content; File format; File name; File size; Four-Way Closure Ridge; P-Cable 3D Seismic; P-Cable 3D seismic cube; Seismic reflection profile; SEISREFL; SO227; SO227_26-1_27-1_28-1; Sonne; Taiflux; Taiwan; Uniform resource locator/link to metadata file; Uniform resource locator/link to sgy data file
    Materialart: Dataset
    Format: text/tab-separated-values, 10 data points
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2023-02-08
    Beschreibung: Highlights • Combining porewater geochemistry, geochemical modeling and subsurface geophysical data in order to understand the fluid flow system of Kerch seep area. • This seep area is not in steady state. • Methane transport is in the form of gas bubbles not porewater advection. • High surface temperatures are the result of hydrate formation and not an indication for elevated geothermal gradients. • Modeling says this seep is young (〈500 years old). Abstract High-resolution 3D seismic data in combination with deep-towed sidescan sonar data and porewater analysis give insights into the seafloor expression and the plumbing system of the actively gas emitting Kerch seep area, which is located in the northeastern Black Sea in around 900 m water depth, i.e. well within the gas hydrate stability zone (GHSZ). Our analysis shows that the Kerch seep consists of three closely spaced but individual seeps above a paleo-channel-levee system of the Don Kuban deep-sea fan. We show that mounded seep morphology results from sediment up-doming due to gas overpressure. Each of the seeps hosts its own gas pocket underneath the domes which are fed with methane of predominantly microbial origin along narrow pipes through the GHSZ. Methane transport occurs dominantly in the form of gas bubbles decoupled from fluid advection. Elevated sediment temperatures of up to 0.3 °C above background values are most likely the result of gas hydrate formation within the uppermost 10 m of the sediment column. Compared to other seeps occurring within the GHSZ in the Black Sea overall only scarce gas indications are present in geoacoustic and geophysical data. Transport-reaction modeling suggests that the Kerch seep is a young seep far from steady state and probably not more than 500 years old.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2023-02-08
    Beschreibung: Large amounts of methane, a potent greenhouse gas, are stored in hydrates beneath the seafloor. Sea level changes can trigger massive methane release into the ocean. It is not clear, however, whether surficial seafloor processes can cause comparable discharge. Previously, fluid migration was difficult to study due to a lack of spatially dense seismic and thermal observations. Here we examine a gas hydrate site at Four‐Way‐Closure Ridge off SW Taiwan using a high‐resolution 3‐D seismic cube, together with bottom‐simulating reflections (BSRs) mapped in the cube, a thermal probe data set, and 3‐D thermal modeling results. We document, on a scale of tens of meters, the interaction between surficial sedimentary processes, fluid flow, and a dynamic gas hydrate system. Fluid migrates upward through dipping permeable strata in the limb, the slope basin, and along thrust faults and ridge‐top normal faults. The seismic data also reveal several double BSRs that underlie seabed sedimentary sliding and depositional features. Abrupt changes in subsurface pressure and temperature due to the rapid seabed sedimentary processes can cause a rapid shift of the base of the gas hydrate stability zone. This shift may be either downward or upward and would result in the accumulation or dissociation of hydrate in sediments sandwiched by the double BSRs, respectively. We propose that dynamic surficial processes on the seafloor together with shallow focused fluid flow affect hydrate distribution and saturation at depth and may even result in methane expulsion into the ocean if such localized features are common along convergent plate boundaries.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2023-02-08
    Beschreibung: Highlights • Seismic depth imaging gives insight into the southern Hikurangi subduction zone. • Velocities reveal regional variations in compaction and drainage of input sediments. • Dewatering of subducted sediments might influence décollement strength. • Thrusts at the leading edge of deformation are upper-plate dewatering pathways. • Stratigraphic host of the décollement changes at the southern end of the margin. Abstract The southern end of New Zealand's Hikurangi subduction margin accommodates highly oblique convergence between the Pacific and Australian plates. We carry out two-dimensional (2D) seismic reflection tomography and pre-stack depth migrations on two seismic lines to gain insight into the nature of subducted sediments and upper plate faulting and dewatering at the toe of the wedge. We also investigate the NE to SW evolution of emergent upper plate thrust faulting using 47 seismic lines spanning an along-strike distance of ∼270 km. The upper sequence of sediments that ultimately gets subducted (the MES sequence) has an anomalously-low seismic velocity character. At the southwestern end of the margin, ∼150 km east of Kaikōura, the MES sequence has experienced greater compaction (for an equivalent effective vertical stress) than it has some 200 km further to the northeast. This difference is likely attributable to greater horizontal compression in the southwest caused by impingement of the Chatham Rise on the deformation front. Relationships between velocity and effective vertical stress suggest that the MES sequence is well-drained in the vicinity of frontal thrusts, corroborated by evidence for upper plate dewatering along those thrusts. Effective drainage of the MES sequence likely promotes interplate coupling on the southern Hikurangi margin. The décollement is generally hosted near a seismic reflector known as “Reflector 7”. East of Kaikōura, however, Reflector 7 becomes accreted, indicating that subduction slip at the southwestern end of the margin is no longer hosted at (or above) this reflector. Instead, the décollement steps down to a deeper stratigraphic level further inboard. Further to the SW, approximately in line with the lower Kaikōura Canyon, the offshore manifestation of subduction-driven compression ceases.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...