GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2000-2004  (8)
  • 2001  (8)
Publikationsart
Schlagwörter
Sprache
Erscheinungszeitraum
  • 2000-2004  (8)
Jahr
  • 1
    Schlagwort(e): Hochschulschrift
    Materialart: Online-Ressource
    Seiten: 1 Online-Ressource (173 Seiten = 6 MB) , Illustrationen, Graphen
    Ausgabe: Online-Ausgabe 2023
    Sprache: Englisch
    Anmerkung: Zusammenfassung in deutscher und englischer Sprache
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Global Biogeochemical Cycles, 15 . pp. 507-516.
    Publikationsdatum: 2018-03-15
    Beschreibung: In laboratory experiments with the coccolithophore species Emiliania huxleyi and Gephyrocapsa oceanica, the ratio of particulate inorganic carbon (PIC) to particulate organic carbon (POC) production decreased with increasing CO2 concentration ([CO2]). This was due to both reduced PIC and enhanced POC production at elevated [CO2]. Carbon dioxide concentrations covered a range from a preindustrial level to a value predicted for 2100 according to a “business as usual” anthropogenic CO2 emission scenario. The laboratory results were used to employ a model in which the immediate effect of a decrease in global marine calcification relative to POC production on the potential capacity for oceanic CO2 uptake was simulated. Assuming that overall marine biogenic calcification shows a similar response as obtained for E. huxleyi or G. oceanica in the present study, the model reveals a negative feedback on increasing atmospheric CO2 concentrations owing to a decrease in the PIC/POC ratio.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2018-10-10
    Materialart: Article , NonPeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    Royal Society of Chemistry
    In:  Analyst, 126 (11). pp. 2036-2039.
    Publikationsdatum: 2016-04-25
    Beschreibung: Carbonic anhydrase (CA) is inactive unless associated with zinc, with possible substitution by cobalt. In this work, the complexation of zinc by CA was determined in sea-water using cathodic stripping voltammetry (CSV) with ligand competition. The zinc was found to be released from the CA over a period of 3 h when equilibrated with a competing complexing ligand and the complex was re-formed with the CA when zinc was added. A value of 8.90+/-0.27 was found for logK'ZnCA where K'ZnCA is the conditional stability constant for the complex of Zn2+ with CA in pH 8 sea-water. A value for the molecular weight of CA was calculated from its equivalent ligand concentration (in nM) obtained by titrations with zinc at various CA concentrations (1-4 mg l(-1)). The value found (34740 g mol(-1)) for the molecular weight is consistent with values found previously by other methods (29000-31000 g mol(-1)) confirming that the stoichiometry of the complex between zinc and CA is 1:1. This work confirms that the zinc-CA complex is reversible and that the interaction between zinc and CA can be determined using CSV with ligand competition.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 2 (2000GC000057).
    Publikationsdatum: 2018-01-30
    Beschreibung: [1] Although the biochemical functions and biosynthetic pathways of alkenones are still largely unknown, alkenone unsaturation ratios are now used extensively to infer ancient sea surface temperature, and their isotopic compositions have been used to reconstruct ancient atmospheric CO2 levels. The inferred relationships between alkenone unsaturation ratios, isotopic compositions, and growth conditions are based on empirical laboratory and field studies and, in the case of isotope fractionation, on simple models of carbon acquisition and fixation. Significant uncertainty still exists concerning the physiological and ecological factors affecting cellular production of alkenones, unsaturation ratios, and isotopic composition. Phytoplankton culture conditions have been shown to affect alkenone unsaturation (U37K′), cellular alkenone content, intracellular isotopic compositions (Δδ), and changes in fractionation (εP) as a function of the quotient of algal growth rate and aqueous carbon dioxide concentration (μ/CO2). Such studies imply that plant physiology can affect the interpretation of environmental signals. The factor(s) controlling cellular alkenone concentrations and unsaturation ratios are reviewed, as well as the carbon isotopic composition of the alkenone-producing algae. A new technique is presented to determine growth rates of the alkenone-containing algae in natural settings that will facilitate testing laboratory-based hypotheses concerning the carbon isotopic fractionation and its relationship to growth rate/growth status of alkenone-producing algae in the field.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 46 . pp. 1378-1391.
    Publikationsdatum: 2014-01-30
    Beschreibung: Rates of cellular uptake of CO2 and HCO3- during steady-state photosynthesis were measured in the marine diatoms Thalassiosira weissflogii and Phaeodactylum tricornutum, acclimated to CO2 partial pressures of 36, 180, 360, and 1,800 ppmv. In addition, in vivo activity of extracellular (eCA) and intracellular (iCA) carbonic anhydrase was determined in relation to CO2 availability. Both species responded to diminishing CO2 supply with an increase in eCA and iCA activity. In P. tricornutum, eCA activity was close to the detection limit at higher CO2 concentrations. Simultaneous uptake of CO2 and HCO3- was observed in both diatoms. At air-equilibrated CO2 levels (360 ppmv), T. weissflogii took up CO2 and HCO3- at approximately the same rate, whereas CO2 uptake exceeded HCO3- uptake by a factor of two in P. tricornutum. In both diatoms, CO2 :HCO3- uptake ratios progressively decreased with decreasing CO2 concentration, whereas substrate affinities of CO2 and HCO3- uptake increased. Half-saturation concentrations were always 〈=5 mM CO2 for CO2 uptake and 〈700 mM HCO3- for HCO3- uptake. Our results indicate the presence of highly efficient uptake systems for CO2 and HCO3- in both diatoms at concentrations typically encountered in ocean surface waters and the ability to adjust uptake rates to a wide range of inorganic carbon supply.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 2 .
    Publikationsdatum: 2018-01-30
    Beschreibung: The number of double bonds in long-chain, unsaturated ketones (alkenones) produced by some members of the Haptophyceae is correlated with the ambient temperature at the time of synthesis. For these same organisms the depletion of carbon-13 in biosynthetic products relative to dissolved inorganic carbon is related directly to the specific growth rate and inversely to the concentration of dissolved carbon dioxide. This report summarizes issues relating to the physiology, metabolism, and biochemistry of alkenone producers and how they affect the abundances and isotopic compositions of alkenones. These considerations show that an understanding of cellular responses to parameters governing uptake of inorganic carbon (Ci), isotopic fractionation, growth under diverse nutrient conditions, and genetic variability, both in the field and in culture, is necessary for developing a conceptual understanding of the biological significance of the ɛP and U37K′ indices. Emiliana huxleyi is the best known alkenone producer and can serve as a model organism for these studies. This report identifies knowledge gaps and appropriate objectives for both field- and laboratory-based research.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    facet.materialart.
    Unbekannt
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 46 . pp. 497-504.
    Publikationsdatum: 2014-01-30
    Beschreibung: Blooms of the marine diatom Skeletonema costatum were initiated in closed-system batch cultures with P-deficient medium under two different initial concentrations of dissolved molecular CO2([CO2,aq]: 20.6 and 4.5 µmol L-1). Algal C: N: P ratios strongly increased with decreasing P concentration. In the exponential growth phase, C: N ratios were 1.3 mol mol-1 higher in the low relative to the high [CO2,aq] treatment. There was no [CO2,aq] effect on C: N: P ratios during P-limited growth. Carbon isotope fractionation («p ) was 2-3‰ higher in the high [CO2,aq] treatment. With growth rate decreasing due to P limitation, ep increased in both [CO2,aq] treatments by 2-3‰ despite decreasing [CO2,aq]. Under these conditions the effect of decreasing growth rate on isotope fractionation strongly dominated over that of declining CO2 availability. When extrapolated to the natural environment, these results imply that systematic changes in algal growth, as occurring during the course of phytoplankton blooms, may affect algal isotope fractionation. These results severely complicate the interpretation of carbon isotope measurements in suspended and sedimentary organic matter
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...