GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2015-07-31
    Description: The architecture of subsurface magma plumbing systems influences a variety of igneous processes, including the physiochemical evolution of magma and extrusion sites. Seismic reflection data provides a unique opportunity to image and analyze these subvolcanic systems in three dimensions and has arguably revolutionized our understanding of magma emplacement. In particular, the observation of (1) interconnected sills, (2) transgressive sill limbs, and (3) magma flow indicators in seismic data suggest that sill complexes can facilitate significant lateral (tens to hundreds of kilometers) and vertical (〈5 km) magma transport. However, it is often difficult to determine the validity of seismic interpretations of igneous features because they are rarely drilled, and our ability to compare seismically imaged features to potential field analogues is hampered by the limited resolution of seismic data. Here we use field observations to constrain a series of novel seismic forward models that examine how different sill morphologies may be expressed in seismic data. By varying the geologic architecture (e.g., host-rock lithology and intrusion thickness) and seismic properties (e.g., frequency), the models demonstrate that seismic amplitude variations and reflection configurations can be used to constrain intrusion geometry. However, our results also highlight that stratigraphic reflections can interfere with reflections generated at the intrusive contacts, and may thus produce seismic artifacts that could be misinterpreted as real features. This study emphasizes the value of seismic data to understanding magmatic systems and demonstrates the role that synthetic seismic forward modeling can play in bridging the gap between seismic data and field observations.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Exploration of Subsurface Antarctica: Uncovering Past Changes and Modern Processes | Special Publications / Geological Society London ; 461
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-18
    Description: atbox - Fault Analysis Toolbox is a python module for the extraction and analysis of faults (and fractures) in raster data. We often observer faults in 2-D or 3-D raster data (e.g. geological maps, numerical models or seismic volumes), yet the extraction of these structures still requires large amounts of our time. The aim of this module is to reduce this time by providing a set of functions, which can perform many of the steps required for the extraction and analysis of fault systems. The basic idea of the module is to describe fault systems as graphs (or networks) consisting of nodes and edges, which allows us to define faults as components, i.e. sets of nodes connected by edges, of a graph. Nodes, which are not connected through edges, thus belong to different components (faults).
    Language: English
    Type: info:eu-repo/semantics/other
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-12-11
    Description: Observations of rift and rifted margin architecture suggest that significant spatial and temporal structural heterogeneity develops during the multiphase evolution of continental rifting. Inheritance is often invoked to explain this heterogeneity, such as pre‐existing anisotropies in rock composition, rheology, and deformation. Here, we use high‐resolution 3D thermal‐mechanical numerical models of continental extension to demonstrate that rift‐parallel heterogeneity may develop solely through fault network evolution during the transition from distributed to localized deformation. In our models, the initial phase of distributed normal faulting is seeded through randomized initial strength perturbations in an otherwise laterally homogeneous lithosphere extending at a constant rate. Continued extension localizes deformation onto lithosphere‐scale faults, which are laterally offset by 10’s of km and discontinuous along‐strike. These results demonstrate that rift‐ and margin‐parallel heterogeneity of large‐scale fault patterns may in‐part be a natural byproduct of fault network coalescence.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-01-29
    Description: Shear zones are common strain localization structures in the middle and lower crust and play a major role during orogeny, transcurrent movements and rifting alike. Our understanding of crustal deformation depends on our ability to recognize and map shear zones in the subsurface, yet the exact signatures of shear zones in seismic reflection data are not well constrained. To advance our understanding, we simulate how three outcrop examples of shear zones (Holsnøy - Norway, Cap de Creus - Spain, Borborema - Brazil) would look in different types of seismic reflection data using 2-D point-spread-function (PSF)-based convolution modelling, where PSF is the elementary response of diffraction points in seismic imaging. We explore how geological properties (e.g. shear zone size and dip) and imaging effects (e.g. frequency, resolution, illumination) control the seismic signatures of shear zones. Our models show three consistent seismic characteristics of shear zones: (1) multiple, inclined reflections, (2) converging reflections, and (3) cross-cutting reflections that can help interpreters recognize these structures with confidence.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-12-11
    Description: Extensional systems evolve through different stages due to changes in the rheological state of the lithosphere. It is crucial to distinguish ductile structures formed before and during rifting, as both cases have important but contrasting bearings on the structural evolution. To address this issue, we present the illustrative ductile‐to‐brittle structural history of a metamorphic core complex (MCC) onshore and offshore western Norway. Combining geological field mapping with newly acquired 3‐D seismic reflection data, we correlate two distinct onshore basement units (BU1 and BU2) to corresponding offshore basement seismic facies (SF1 and SF2). Our interpretation reveals two 40 km wide domes (one onshore and one offshore), which both show characteristic kilometer‐scale, westward plunging upright folds. The gneiss domes fill antiformal culminations in the footwall of a 〉100 km long, shallowly west dipping, extensional detachment. Overlying Caledonian nappes and Devonian supradetachment basins occupy saddles of the hyperbolic detachment surface. Devonian collapse of the Caledonian orogen formed dome and detachment geometries. During North Sea rifting, brittle reactivation of the MCC resulted in complex fault patterns deviating from N‐S strike dominant at the eastern margin of the rift. Around 61°N, only minor N‐S faults (〈100 m throw) cut through the core of the MCC. Major rift faults (≤5 km throw), on the other hand, reactivated the detachment and follow the steep flanks of the MCC. This highlights that inherited ductile structures can locally alter the orientation of brittle faults formed during rifting.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...