GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
  • 1
    Publication Date: 2023-06-27
    Description: Alpine lakes support unique communities which may respond with great sensitivity to climate change. To understand the drivers of benthic macroinvertebrate community structure, samples were collected in the littoral of 28 lakes within Hohe Tauern National Park, Austria. Sampling took place from early July to early August 2018 between altitudes of 2,000 and 2,700 m a.s.l. The extent of habitat types in the lake littoral was estimated. Habitat types were classified into sediment (maximum grain size of 2 mm), small rocks (up to 20 cm x 15 cm x 5 cm), and large boulders/sheer rock faces. The extent of rocky habitats was calculated as the sum of areas covered by small rocks and boulders/sheer rock faces. A total area of 1 m² was sampled in each lake, using a hand net with a sharp frame (25 cm in width) and 500 µm mesh-size. Mixed samples were taken, covering each habitat type proportional to its extent in the lake (100% corresponding to 1 m²). For habitats covering up to 10% of the lake, a standardized area of 0.1 m² was sampled. In sediment, the uppermost 5 cm of the ground were scooped into the net by sweeping it swiftly through the sediment. When sampling large boulders or rock faces, a metal spatula was used to scrape macroinvertebrates off the surface and collect them in the net. Macroinvertebrates were brushed off small rocks using a toothbrush over water-filled trays. The dimensions of those small rocks were measured, and total surface area was calculated, assuming a suitable geometric form (ellipsoid or cuboid). Samples were presorted in the field and preserved in 4% formalin. After 3-4 weeks, all samples were rinsed in tap water and transferred to 70% ethanol for further storage. Identification was performed using a stereomicroscope (OLYMPUS SZX16, 11.2x-184x) to the lowest taxon possible.
    Keywords: Alps; Barrenlesee; chemistry; Class; DATE/TIME; Debantsee; elevational gradient; Elisabethsee; Event label; Family; Foisskarsee; Gartlesee; Genus; Gletscherplateau; Grosses_Elend; Grueneckersee; habitat type; high-altitude; Hohe Tauern, Austria; Innergeschloess_2; Innergeschloess_3; Kleiner_Barrenlesee; Kleiner_Plattachsee; Kleiner_Tauernsee; Lake; lake littoral; lake size; Langsee; Leibnitzkopfpfuetze; Loebbensee; macrozoobenthos; MULT; Multiple investigations; Murmelblubber; Number; Obervorderjaidbachsee; Order; Phylum; Plattachsee; Plattensee; Salzbodensee; Schneefeldsee; Schwarzseele; See_nahe_Loebbensee; See_neben_Seebachsee; Seebachsee; Species; Specimen count; Stereomicroscope, OLYMPUS SZX16; Subclass; Subfamily; Sulzsee; Tribe; Untervorderjaidbachsee
    Type: Dataset
    Format: text/tab-separated-values, 1557 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-10
    Description: Alpine lakes support unique communities which may respond with great sensitivity to climate change. To understand the drivers of benthic macroinvertebrate community structure, samples were collected in the littoral of 28 lakes within Hohe Tauern National Park, Austria. Sampling took place from early July to early August 2018 between altitudes of 2,000 and 2,700 m a.s.l. The extent of habitat types in the lake littoral was estimated. Habitat types were classified into sediment (maximum grain size of 2 mm), small rocks (up to 20 cm x 15 cm x 5 cm), and large boulders/sheer rock faces. The extent of rocky habitats was calculated as the sum of areas covered by small rocks and boulders/sheer rock faces. A total area of 1 m² was sampled in each lake, using a hand net with a sharp frame (25 cm in width) and 500 µm mesh-size. Mixed samples were taken, covering each habitat type proportional to its extent in the lake (100% corresponding to 1 m²). For habitats covering up to 10% of the lake, a standardized area of 0.1 m² was sampled. In sediment, the uppermost 5 cm of the ground were scooped into the net by sweeping it swiftly through the sediment. When sampling large boulders or rock faces, a metal spatula was used to scrape macroinvertebrates off the surface and collect them in the net. Macroinvertebrates were brushed off small rocks using a toothbrush over water-filled trays. The dimensions of those small rocks were measured, and total surface area was calculated, assuming a suitable geometric form (ellipsoid or cuboid). Samples were presorted in the field and preserved in 4% formalin. After 3-4 weeks, all samples were rinsed in tap water and transferred to 70% ethanol for further storage. Identification was performed using a stereomicroscope (OLYMPUS SZX16, 11.2x-184x) to the lowest taxon possible. Lake size was determined by aerial photograph in Google Earth Pro. To do so, the outlines of the lakes were traced, and the area of the polygon then calculated. Physical and chemical water parameters were measured with a multi-parameter sonde (EXO2 YSI) (for lakes 1-18 from a boat, otherwise from a rock or by wading into the lake): water temperature (°C), dissolved oxygen (% saturation), conductivity (µS/m), pH, nitrate (mg/l), turbidity (FNU), blue-green algae phycocyanin (µg/l) and chlorophyll-a (µg/l). Maximum depth (m) was measured with a sonar by rowing up to 10 transects across lakes. Maximum depth was not measured for lakes 19-28. Two data loggers had been planted per lake in lakes 1-18 in the previous year and were recovered in 2018. Data loggers measured water temperature at about half a meter depth in six-hour intervals over an entire year. Ice-free days were deduced from available logger data, assuming an ice-cover at water temperatures below 2 °C (daily maximum temperature). Additionally, zoo- and phytoplankton samples were taken from the first 18 lakes. Zooplankton was sampled with vertical tows from the hypolimnion to the surface in deeper lakes, and with oblique tows in shallow lakes using a 29 cm diameter net with a 30 µm mesh size. Samples were then fixed in sucrose-formalin and counted under an Olympus SZX16 stereomicroscope equipped with a 0.7 – 11.5 zoom objective. Phytoplankton samples from lakes 1-18 were taken with a 1.2 L water sampler from the middle of the epilimnion, and when one was present, also from the deep chlorophyll maximum. Samples were fixed with Lugol's iodine and counted in sampling chambers with a Nikon TE2000 inverted microscope using a 20x objective.
    Keywords: Alps; Area in hectare; Barrenlesee; Calculated; chemistry; Chironomidae; Chironomidae/total abundance ratio; Chlorophyll a; Conductivity, specific; Corixidae; DATE/TIME; Debantsee; DEPTH, water; Dilochopodidae; Dytiscidae; ELEVATION; elevational gradient; Elisabethsee; Empididae; EPT (Ephemeroptera, Plecoptera and Trichoptera)/total abundance ratio; Event label; EXO2 Multisonde; Exposition; Foisskarsee; Gartlesee; Gletscherplateau; Grosses_Elend; Grueneckersee; habitat type; Helophoridae; high-altitude; Hohe Tauern, Austria; Hydrachnidae; Ice-free days; Innergeschloess_2; Innergeschloess_3; Kleiner_Barrenlesee; Kleiner_Plattachsee; Kleiner_Tauernsee; Lake; lake littoral; lake size; Langsee; LATITUDE; Leibnitzkopfpfuetze; Leuctridae; Limnephilidae; Limoniidae; Location; Loebbensee; LONGITUDE; macrozoobenthos; MULT; Multiple investigations; Murmelblubber; Nemouridae; Nikon TE2000 inverted microscope; Nitrate; Number; Obervorderjaidbachsee; Oligochaeta; Oxygen, dissolved; Pediciidae; pH; Phycocyanin; Phytoplankton; Planariidae; Plattachsee; Plattensee; Pressure, water; Rocks, small; Rocks, total; Salzbodensee; Schneefeldsee; Schwarzseele; Sediment cover; See_nahe_Loebbensee; See_neben_Seebachsee; Seebachsee; Sheer rocks; Sonar; Sphaeriidae; Stereomicroscope, OLYMPUS SZX16; Sulzsee; Temperature, water; Turbidity (Formazin nephelometric unit); Untervorderjaidbachsee; YSI_EXO; Zooplankton
    Type: Dataset
    Format: text/tab-separated-values, 1025 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-05-28
    Description: Zooplankton grazing on bacterio- and phytoplankton was studied in the Gulf of Aqaba and the Northern Red Sea during Meteor Cruise Me 44-2 in February-March 1999. Protozoan grazing on bacterioplankton and autotrophic ultraplankton was studied by the Landry dilution method. Microzooplankton grazing on phytoplankton 〉6 µm was studied by incubation experiments in the presence and absence of microzooplankton. Mesozooplankton grazing was studied by measuring per capita clearance rates of individual zooplankton with radioactively labelled food organisms and estimating in situ rates from abundance values. Protozoan grazing rates on heterotrophic bacteria and on algae 〈6 µm were high (bacteria: 0.7 to 1.1 d-1, ultraphytoplankton: 0.7 to 1.3 d-1), while grazing rates on Synechococcus spp. were surprisingly low and undetectable in some experiments. Mesozooplankton grazing was weak, cumulative grazing rates being ca. 2 orders of magnitude smaller than the grazing rates by protozoans. Among mesozooplankton, appendicularians specialised on smaller food items and calanoid copepods on larger ones.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 26 (1991), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: SUMMARY. 1. Two experiments with plankton communities from Storrs Pond (NH), one conducted in the laboratory and one in field enclosures, assessed the impact of different cladocerans on rotifers and ciliated protozoa.2. The smallest cladoceran, Bosmina longirostris, did not depress rotifer or ciliate growth rates while the intermediate sized dadoceran, Daphnia galeata mendotae, reduced ciliate growth rates in the enclosure experiment but had only a marginal effect in the jar experiment. D. galeata mendotae had no effect on any of the rotifers in either experiment.3. In both experiments the largest cladoceran, Daphniapulex, depressed the growth rates of ciliates and those rotifers known to be vulnerable to interference competition. Polyarthra vulgaris, previously shown to be resistant to cladoceran interference, was the only rotifer unaffected by D. pulex in the field experiment but was depressed by the much higher densities of this cladoceran in the laboratory experiment.4. Cladocerans did not affect phytoplankton or bacterioplankton abundance in either experiment. Therefore the mechanism most likely to be responsible for the suppressive effect of cladocerans on rotifers and ciliates in these experiments is direct mechanical interference or predation, rather than exploitative competition.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Freshwater biology 30 (1993), S. 0 
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 〈list xml:id="l1" style="custom"〉1 The major components of the microbial food web (dissolved organic carbon, bacteria, protozoa, rotifers and algae) of Priest Pot, a small freshwater pond, were investigated over a period of 5 months. Water samples were collected from the epilimnion every 1–3 days.2 Time series analysis helped identify the trophic relationships within the planktonic community. There were strong predator—prey relationships between both ciliates and large rotifers and the total nanoplankton, between rotifers and small ciliates and between the total microzooplankton community and phytoplankton. Small rotifers and small ciliates probably share the same food resources. The major bacterivores in the system could not be identified with our methods. However, our previous results point to a dominating role of nanoplanktonic (2–20 μm) heterotrophic protists as the main grazers of bacteria.3 Rotifers are the major type of metazoan zooplankton in Priest Pot; crustacean zooplankton are absent from the community. Bacterial production probably reaches rotifers via a variety of pathways: there may be a three-step link from bacteria to bacterivorous nanoplankton, to ciliates and then to rotifers. Furthermore, a strong correlation between the nanoplankton and rotifers suggests a direct link between these components, implying a much shorter pathway. Some of the rotifers in the pond can graze directly on bacteria, and many of the larger planktonic organisms (large ciliates and rotifers) are algivores. The latter two predator—prey relationships suggest an efficient transfer of bacterial and primary production to higher trophic levels.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. The taxonomic composition, abundance and biomass of heterotrophic protists (ciliates, heterotrophic flagellates (HF), rhizopods and actinopods) in the sediment and water column of shallow inlets of the Southern Baltic was studied under a variety of environmental conditions during 1996–1997. A shallow, highly eutrophic station and a deeper, less eutrophic station were compared. 
2. Community biomass ranged from 0.12 to 0.34 μg C cm−3 in the water column and from 1.5 to 105 μg C cm−3 in the sediment. Heterotrophic protists dominated zooplankton biomass at both stations (73% and 84% mean contribution), while they were of minor importance within the zoobenthos. Expressed per unit area, benthic biomass contributed a significant part (44% and 49%) to the total heterotrophic protistan community at both stations. 
3. Although the methodology for counting ciliates and HF was focussed on a high taxonomic resolution, the results reveal some general trends in the distribution of heterotrophic protists: protozooplankton biomass was dominated by flagellates (80% mean biomass contribution) at the shallow station and by ciliates (73% mean biomass contribution) at the deep station. In the benthos at both stations, ciliates were the dominant protozoans, followed by the hitherto little-studied rhizopods (25% and 35% mean biomass contribution) and flagellates. 
4. The degree of benthic–pelagic coupling differed between taxonomic groups. Benthic and pelagic communities of ciliates showed little taxonomic overlap. In contrast, many heterotrophic flagellate species were found both in the benthos and in the pelagic. These benthic–pelagic species contributed significantly to the biomass of HF in the water column. The planktonic rhizopod community consisted of a subset of those species found in the benthos. 
5. The abundance of benthic and pelagic protists was positively correlated at the shallow station, but taxonomic data indicate that the direct exchange between benthic and pelagic communities was only partly responsible.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Stable isotope analyses of rocks and minerals associated with the detachment fault and underlying mylonite zone exposed at Secret Creek gorge and other localities in the Ruby-East Humboldt Range metamorphic core complex in northeastern Nevada provide convincing evidence for meteoric water infiltration during mylonitization. Whole-rock δ18O values of the lower plate quartzite mylonites (≥95% modal quartz) have been lowered by up to 10 per mil compared with structurally lower, compositionally similar, unmylonitized material. Biotite from these rocks has δD values ranging from -125 to -175, compared to values of -55 to-70 in biotite from unmylonitized rocks. Mylonitized leucogranites have large disequilibrium oxygen isotope fractionations (Δ quartz-feldspar up to ∼8 per mil) relative to magmatic values (Δ quartz-feldspar∼1 to 2 per mil)). Meteoric water is the only major oxygen and hydrogen reservoir with an isotopic composition capable of generating the observed values. Fluid inclusion water from unstrained quartz in silicified breccia has a δD value of-119 which provides a plausible estimate of the δD of the infiltrating fluid, and is similar to the isotopic composition of present-day and Tertiary local meteoric water. The quartzite mylonite biotites would have been in equilibrium with such a fluid at temperatures of 480–620° C, similar to independent estimates of the temperature of mylonitization. The relatively high temperatures required for isotopic exchange between quartz and water, the occurrence of fluid inclusion trails and deformed veins in quartzite mylonites, and the spatial association of the low-18O, low-D rocks with the shear zone all constrain isotopic exchange to the mylonitic (plastic) deformation event. These observations suggest thata significant amount of meteoric water infiltrated the shear zone during mylonitization to depths of at least 5 to 10 km below the surface. The depth of penetration of meteoric fluids into the lower plate mylonites was at least 70 meters below the detachment fault. In contrast, the upper-plate unmylonitized fault slices are dominated by brittle fracture and are often intensely veined (carbonates) or silicified (volcanic rocks and breccias). The fluids associated with the veining and silicification were also meteoric as evidenced by low δ18O values of the veins, which are often 10 per mil lower than the adjacent carbonate matrix, and the exceptionally low δ18O values (down to-4.4) of the breccias. Several previous studies have documented the infiltration of meteoric fluids into the brittley deformed upper plate rocks of core complexes, but this study provides convincing evidence that surface fluids have penetrated lower plate rocks undergoing plastic deformation. It is proposed that infiltration took place as the shear zone began the transition from plastic flow to brittle fracture while the lower plate rocks were being uplifted. During this period, plastic flow and brittle fracture were operating simultaneously, perhaps allowing upper plate meteoric fluids to be seismically pumped down into the lower plate mylonites.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 119 (1995), S. 68-82 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Previous stable isotope studies at Lizzies Basin revealed that metasedimentary rocks are 18O-depleted relative to protolith values, particularly in the lower parts of the section (Lower Zone) where the rocks are also isotopically homogeneous on a scale of hundreds of meters (quartz δ18O=+9.0 to +9.6 per mil). In contrast, metasedimentary rocks at higher levels at Lizzies Basin (Upper Zone) are less 18O-depleted and more heterogeneous in δ18O. In order to understand more fully the isotopic evolution of this terrane, a series of detailed, meter-scale traverses across various metamorphic and igneous lithologies were completed at Lizzies Basin, and at the structurally higher Angel Lake locality. Traverses in the Lizzies Basin Lower Zone and in the lower parts of Angel Lake (Angel Lake Lower Sequence) across various silicate lithologies, including abundant granitoids, reveal similar degrees of homogeneity, although the average δ18O values are higher at Angel Lake. In contrast, traverses which include substantial thicknesses of marble and calc-silicate gneiss and very little granitoid have more heterogeneous quartz δ18O values (+11.9 to +13.4 per mil), and also have a higher average δ18O (+12.9 per mil), than observed elsewhere. The scale of 18O/16O homogeneity in quartz observed at Lizzies Basin and Angel Lake (meters to hundreds of meters) requires fluid-mediated isotope exchange, which accompanied Tertiary metamorphism. There is a correlation between the degree of 18O-depletion in metasedimentary rocks, 18O/16O homogenization between lithologies, and the proportion of granitoids (leucogranites in particular) within any part of the section, and a corresponding anticorrelation with the proportion of marble. This points to a causal relationship, whereby the leucogranites (as well as the Tertiary hornblende diorite and biotite monzogranite) acted as both a relatively low-18O reservoir and a source of fluids to enhance exchange, while the marbles hindered isotope depletion and homogenization by acting as relatively high-18O reservoirs and impermeable layers. Material balance calculations help delineate the plausible mechanisms of exchange between granitoids and metasediments. Single-pass infiltration of magmatic fluids from the granitoids is not capable of reproducing all of the observations. Fluid-mediated exchange by convective recirculation of magmatic fluids on a scale of meters is the mechanism which explains all of the observations. The generalized model for the isotopic evolution of the East Humboldt Range core complex provides an excellent opportunity to establish the main causes and controlling factors of 18O-depletion and 18O/16O homogenization during regional metamorphism.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 333 (1988), S. 119-120 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] GRANULITES, high-grade metamorphic rocks that are deficient in hydrous minerals, are significant constituents of the middle and lower continental crust, and are of great petrological interest1^4. Elucidating the conditions in which they formed will reveal much about the genesis of the early crust ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 345 (1990), S. 150-153 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...