GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cary : Oxford University Press, Incorporated
    Keywords: Biogeochemistry -- Amazon River Watershed ; Amazon River ; Electronic books ; local ; Amazon River ; Biogeochemistry ; Amazon River Watershed ; Electronic books ; Amazonas ; Einzugsgebiet ; Biogeochemie ; Ökologische Chemie ; Kreislauf ; Stoffhaushalt ; Amazonastiefland ; Biogeochemie
    Description / Table of Contents: With a complex assemblage of largely intact ecosystems that support the earth's greatest diversity of life, the Amazon basin is a focal point of international scientific interest. And, as development and colonization schemes transform the landscape in increasing measure, scientists from around the world are directing attention to questions of regional and global significance. Some of these qustions are: What are the fluxes of greenhouse gases across the atmospheric interface of ecosystems? How mush carbon is stored in the biomass and soils of the basin? How are elements from the land transferred to the basin's surface waters? What is the sum of elements transferred from land to ocean, and what is its marine "fate"? This book of original chapters by experts in chemical and biological oceanography, tropical agronomy and biology, and the atmospheric sciences will address these and other important questions, with the aim of synthesizing the current knowledge of biochemical processes operating within and between the various ecosystems in the Amazon basin.
    Type of Medium: Online Resource
    Pages: 1 online resource (378 pages)
    ISBN: 9780195354232
    DDC: 577.1409811
    RVK:
    RVK:
    RVK:
    Language: English
    Note: Description based on publisher supplied metadata and other sources
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The future flora of Amazonia will include significant areas of secondary forest as degraded pastures are abandoned and secondary succession proceeds. The rate at which secondary forests regain carbon (C) stocks and re-establish biogeochemical cycles that resemble those of primary forests will influence the biogeochemistry of the region. Most studies have focused on the effects of deforestation on biogeochemical cycles. In this study, we present data on the recuperation of carbon stocks and carbon fluxes within a secondary forest of the eastern Amazon, and we compare these measurements to those for primary forest, degraded pasture, and productive pasture. Along a transect from a 23-y-old degraded pasture, through a 7-y-old secondary forest, through a 16-year-old secondary forest, and to a primary forest, the δ13C values of soil organic matter (SOM) in the top 10 cm of soil were – 21.0, – 26.5, – 27.4, and – 27.9‰, respectively, indicating that the isotopic signature of SOM from C3 forest plants was rapidly re-established. The degraded pasture also had significant inputs of C from C3 plants. Radiocarbon data indicated that most of the C in the top 10 cm of soil had been fixed by plants during the last 30 years. Differences in soil C inventory among land use types were small compared to uncertainties in their measurement. Root inputs were nearly identical in primary and secondary forests, and litterfall in the secondary forest was 88% of the litterfall rate of the primary forest. In contrast, the secondary forest had only 17% of the above ground biomass. Because of rapid cycling rates of soil C and rapid recovery of C fluxes to and from the soil, the below ground C cycle in this secondary forest was nearly identical with those of the unaltered primary forest.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Land use and land cover changes in the Brazilian Amazon region have major implications for regional and even global carbon cycling. We analyzed the effects of the predominant land use change, conversion of tropical forest to pasture, on total soil C and N, using the Century ecosystem model and data collected from the Nova Vida ranch, Western Brazilian Amazon. We estimated equilibrium organic matter levels, plant productivity and residue carbon inputs under native forest conditions, then simulated deforestation following the slash and burn procedure. Soil organic matter dynamics were simulated for pastures established in 1989, 1987, 1983, 1979, 1972, 1951, and 1911. Using input data from the Nova Vida ranch, the Century model predicted that forest clearance and conversion to pasture would cause an initial decline in soil C and N stocks, followed by a slow rise to levels exceeding those under native forest. Simulated soil total C and N levels (2500 g C m−2 and 245 g N m−2 in the 0–20 cm layer) prior to conversion to pasture were close to those measured in the native forest. Simulated above- and below-ground biomass for the forest and pasture were comparable with literature values from this region. The model predicted the long-term changes in soil C and N under pasture inferred from the pasture chronosequence, but there was considerable variation in soil C stocks for pastures 〈20 years in age. Differences in soil texture between pastures were relatively small and could not account for much of the variability between different pastures of similar ages, in either the measured or simulated data. It is likely that much of the variability in C stocks between pastures of similar ages is related to initial C stocks immediately following deforestation and that this was the largest source of variability in the chronosequence. Internal C cycling processes in Century were evaluated using measurements of microbial biomass and soil δ13C. The relative magnitude and long-term trend in microbial biomass simulated by the model were consistent with measurements. The close fit of simulated to measured values of δ13C over time suggests that the relative loss of forest-derived C and its replacement by pasture-derived C was accurately predicted by the model. After 80 years, almost 90% of the organic matter in the top 20 cm was pasture derived. While our analysis represents a single ‘case study’ of pasture conversion, our results suggest that modeling studies in these pasture systems can help to evaluate the magnitude of impacts on C and N cycling, and determine the effect of management strategies on pasture sustainability.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 〈list style="custom"〉1Several studies have shown that land use has a strong influence on river chemistry and its biotic components. Most of these studies focused on nitrogen in temperate American and European catchments. Much less is known about the relationship between stream conditions and land use in tropical areas of developing countries.2Besides climate, there are three important differences between attributes of temperate and tropical catchments: non-point sources are the dominant contributor of pollution in USA, whereas point source pollution is the most important in our study; use of fertilizer is much smaller in developing countries, and the type of agriculture and management practices are distinct.3We test whether the chemical composition of streams and their macroinvertebrate communities can be related to land use. Accordingly, we compared the variability of chemical composition and macroinvertebrate communities in the streams of two catchments (Pisca and Cabras) belonging to the same ecoregion, but having different types of land use.4The main land use in the Pisca catchment in 1993 was sugar cane (62%), followed by pasture (22%) and urban centres (10%). In contrast, the main land use in the Cabras catchment was pasture (60%), followed by annual crops (13%) and forest (10%); urban centres occupied only 2% of the catchment.5In the Cabras catchment, most of the parameters correlated with a land use index (LUI) ( 〈link href="#f2"〉Fig. 2). However, only conductivity, major cations and major anions (with exception of sulfate) had a statistically significant correlation coefficient. More than 90% of the variance was explained for these parameters. DIC, NO3 and richness of invertebrates (RI) also strongly correlated with LUI (R2 = 0.75), although these correlation coefficients were not significant. Total suspended solids (TSS) had a significant correlation with LUI (R2 = 0.98), but, the correlation was inverse. In the Pisca catchment, conductivity, major cations (with exception of potassium), major anions, and DIC, DO, and DOC had a strong and statistically significant correlation with LUI. Correlation coefficients were also high for respiration rate, although the correlation was not statistically significant.〈figure xml:id="f2"〉2〈mediaResource alt="image" href="urn:x-wiley:00465070:FWB557:FWB_557_f2"/〉Relationships between variables and LUI (land use index) for the Cabras (closed circle) and Pisca (open circle) catchments. Both catchment were pooled together in this figure, however, statistical tests were performed separately for each catchment.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Key words Amazonia ; Stable isotope ; Savanna ; Trophic level ; Carbon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We studied the energy flow from C3 and C4 plants to higher trophic levels in a central Amazonian savanna by comparing the carbon stable-isotope ratios of potential food plants to the isotope ratios of species of different consumer groups. All C4 plants encountered in our study area were grasses and all C3 plants were bushes, shrubs or vines. Differences in δ13C ratios among bushes (x¯ = −30.8, SD = 1.2), vines (x¯ = −30.7, SD = 0.46) and trees (x¯ = −29.7, SD = 1.5) were small. However the mean δ13C ratio of dicotyledonous plants (x¯ = −30.4, SD = 1.3) was much more negative than that of the most common grasses (x¯ = −13.4, SD = 0.27). The insect primary consumers had δ13C ratios which ranged from a mean of −29.5 (SD = 0.47) for the grasshopper Tropidacris collaris to a mean of −14.7 (SD = 0.56) for a termite (Nasutitermes sp.), a range similar to that of the vegetation. However, the common insectivorous and omnivorous vertebrates had intermediate values for δ13C, indicating that carbon from different autotrophic sources mixes rapidly as it moves up the food chain. Despite this mixing, the frogs and lizards generally had higher values of δ13C (x¯ = −21.7, SD = 1.6; x¯ = −21.9, SD = 1.8, respectively) than the birds (x¯ = −24.8, SD = 1.8) and the only species of mammal resident in the savanna (x¯ = −25.4), indicating that they are generally more dependent on, or more able to utilise, food chains based on C4 grasses.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The chemical composition of ground waters and stream waters is thought to be determined primarily by weathering of parent rock. In relatively young soils such as those occurring in most temperate ecosystems, dissolution of primary minerals by carbonic acid is the predominant weathering pathway ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 353 (1991), S. 57-59 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Because of different pathways in photosynthetic biochemistry, C3 and C4 plants discriminate against the heavy carbon isotope (13C) (refs 6, 7). Consequently, tissues of C3 plants such as trees have an average 513C value of -27%〉 whereas C4 plants, which are mainly grasses, average about -12%〉 ...
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1572-9893
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography
    Notes: Abstract Soil samples were collected on the floodplains of the Amazon River and its principal Brazilian tributaries during dry, early rising water, and early falling water periods. The concentrations of basic cations and pH in these alluvial soils were always higher than those in the more common “terra firme” soils while the concentrations of aluminum were generally lower. Among the alluvial soils, those from the main channel floodplain were generally higher in basic cations and pH, and lower in aluminum than those from the tribuary floodplains. The concentrations of basic cations in soils along the main channel floodplain decreased downstream. No significant difference was found in the levels of basic cations, pH, or aluminum between sampling periods.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1572-9893
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography
    Notes: Abstract In this report the state of knowledge of sediment transport by rivers of the Amazon drainage basin is reviewed. On an annual basis the Amazon river transports about 1200×106 tons of sediment from the South American continent to the ocean, which puts it among the world's largest rivers in this respect. The main source of sediment is erosion in the Andes mountains and this material is progressively diluted with sediment poor runoff from lowland draining tributaries. Almost half of the Amazon river transport is attributable to one tributary, the Rio Madeira (488×106 t/y). The Rio Negro, which drains the N crystalline shield, has a comparable water discharge to the Rio Madeira, but only contributes 7×106 t/y. In general the sediments in transport are about 1% organic carbon by weight and this results in an annual particulate carbon to the oceans of 13×106 t/y. Total carbon transport, particulate plus dissolved, is about twice this amount.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-1650
    Keywords: changing-point ; human induced changes ; hydrology ; time series ; trend analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: Abstract The Piracicaba river basin is a subtropical watershed located in the southeastern region of Brazil. With an area of 12 400 km2, the basin is a typical example of new landscape resulting from development in tropical and sub-tropical regions: establishment of intensive industrial and agricultural processes were followed by significant population growth and water management. This scenario has led to significant increase in water demand and decrease in water quality. The main objective of this study is the detection of changes in the patterns of flow and precipitation in the basin, and its possible relation to man-induced changes. Statistical analyses were performed on records of precipitation, evapotranspiration and streamflow, from 1947 to 1991. Precipitation and evapotranspiration totals showed significant increasing trends for the entire basin. From eight streamflow gauge stations, half showed significant decreasing trend. The most probable cause of such trends is the export of water from the basin to the metropolitan region of São Paulo city.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...