GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Lake ecology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (699 pages)
    Edition: 1st ed.
    ISBN: 9783642840777
    Series Statement: Brock Springer Series in Contemporary Bioscience Series
    DDC: 574.526322
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Keywords: Lake ecology Congresses ; Aufsatzsammlung ; Konferenzschrift ; See ; Ökosystem
    Type of Medium: Book
    Pages: XVIII, 691 S. , Ill., graph. Darst., Kt.
    ISBN: 3540521038 , 0387521038
    Series Statement: Brock/Springer series in contemporary bioscience
    DDC: 574.5/26332
    RVK:
    RVK:
    RVK:
    Language: English
    Note: Papers presented at a symposium entitled Functional and structural properties of large lakes, held Constance, West Germany, Sept. 1987
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-09-01
    Type: Dataset
    Format: application/zip, 11.5 MBytes
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic sciences 54 (1992), S. 91-103 
    ISSN: 1420-9055
    Keywords: Large lakes ; ecophysics ; biogeochemistry ; food webs ; ecology ; research priorities
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This contribution has been edited from a working document, prepared by invited scientists attending a workshop in Konstanz, Germany, on the importance of external perturbations for short- and long-term changes in large lakes ecosystems, held from 21 to 26 October, 1991. It tries to assess our current understanding of the most important processes involved in the functioning of large lakes and to identify the currently most urgent research priorities in the fields of land-water interactions, physical processes, biogeochemistry and nutrient relations, remote sensing, biological interactions in food webs, and long-term monitoring programs.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1420-9055
    Keywords: Primary production ; oligotrophy ; photosynthetic bacteria ; meromixis ; kettle lake
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract During 1986 planktonic primary production and controlling factors were investigated in a small (A0 = 11.8 · 103 m2, Zmax = 11.5 m) meromictic kettle lake (Mittlerer Buchensee). Annual phytoplankton productivity was estimated to ca 120 gC · m−2 · a−1 (1,42 tC · lake−1 · a−1). The marked thermal stratification of the lake led to irregular vertical distributions of chlorophylla concentrations (Chla) and, to a minor extent, of photosynthesis (Az). Between the depths of 0 to 6 m low Chla concentrations (〈 7 mg · m−3) and comparatively high background light attenuation (kw = 0,525 m−1, 77% of total attenuation due to gelbstoff and abioseston) was found. As a consequence, light absorption by algae was low (mean value 17,4%) and self-shading was absent. Because of the small seasonal variation of Chla concentrations, no significant correlation between Chla and areal photosynthesis (ΣA) was observed. Only in early summer (June–July) biomass appears to influence the vertical distribution of photosynthesis on a bigger scale. Around 8 m depth, low-light adapted algae and phototrophic bacteria formed dense layers. Due to low ambient irradiances, the contribution of these organisms to total primary productivity was small. Primary production and incident irradiance were significantly correlated with each other (r2 = 0.68). Although the maximum assimilation number (Popt) showed a clear dependence upon water temperature (Q10 = 2.31), the latter was of minor importance to areal photosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1420-9055
    Keywords: Phytoplankton ; primary production ; photosynthesis ; optics ; adaptation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract This tutorial was designed for nonbiologists requiring an introduction to the nature and general timescales of phytoplankton responses to physical forcing in aquatic environments. As such, an effort was made to highlight biological markers which might assist in identifying, measuring and/or validating physical processes controlling the variability in the distribution, abundance, composition and activity of phytoplankton communities. Given the recent advances in environmental optics and remote sensing capabilities, a special emphasis was placed on the nature and utility of phytoplankton optical properties in current bio-optical modelling efforts to predict temporal and spatial variability in phytoplankton productivity and growth.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Polar biology 7 (1987), S. 35-42 
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Photosynthesis and respiratory carbon losses of freshly collected Antarctic phytoplankton were measured in incubators at 5 temperatures between-2° C and +8°C. The results were used to predict daily growth rates and to define temperature and daylength boundary conditions under which the net balance between photosynthesis and respiration would be positive and allow increases in standing stock. Whereas the Q10 of photosynthesis was 1.4–2.2, the Q10 of respiratory losses exhibited a wide range and higher maxima (2.3–12). Model calculations sugest that under ample light energy supply during long summer days, potential daily growth rates are not severely affected by the low temperatures prevailing in the Southern Ocean. If energy supply is restricted by short days and deep water column mixing, substantially reduced respiration rates at low temperatures may allow the algae to survive.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary During October/November 1983 photosynthetic responses of natural phytoplankton from the Scotia Sea and Bransfield strait to light and temperature were examined in incubators. Both assimilation numbers at saturating light levels and the slopes of the light-limited portions of the photosynthesis versus irradiance curves were smaller than in algae from lower latitudes. However, both parameters increased significantly with rising temperatures. Light-saturated photosynthesis on the average exhibited a Q10-value of ca. 4.2 between-1.5°C and +2°C. Light-limited photosynthesis between-1.5°C and +5°C rose at a rate corresponding to a Q10-value of roughly 2.6. Above +5°C, temperature enhancement of both light-saturated and light-limited photosynthetic rates was minimal or absent. Our results suggest that under extremely low temperatures light-limited photosynthetic rates become temperature-dependent due to changes in maximum quantum yields.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 316 (1995), S. 161-172 
    ISSN: 1573-5117
    Keywords: spectral water transparency ; underwater light field ; Lake Constance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract At all seasons, the underwater light field of meso-eutrophic large (480 km2) deep (mean: 100 m) Lake Constance was studied in conjunction with the assessments of vertical distributions of phytoplankton chlorophyll concentrations. Vertical profiles of scalar, downwelling and upwelling fluxes of photosynthetically available radiation, as well as fluxes of spectral irradiance between 400 and 700 nm wavelength were measured. The overall transparency of the water for PAR is highly dependent on chlorophyll concentration. However, the spectral composition of underwater light is narrowing with water depth regardless of phytoplankton biomass. Green light is transmitted best, even at extremely low chlorophyll concentrations. This is explained by the selective absorption of blue light by dissolved organic substances and red light by the water molecules. Nevertheless, significant correlations were found between vertical attenuation coefficients of downwelling spectral irradiance and chlorophyll concentrations at all wavelengths. The slopes of the regression lines were used as estimates of chlorophyll-specific spectral vertical light attenuation coefficients (K c(λ)). The proportions of total upwelling relative to total downwelling irradiance (reflectance) increased with water depth, even when phytoplankton were homogeneously distributed over the water column. Under such conditions, reflectance of monochromatic light remained constant. Lower reflectance of PAR in shallow water is explained by smaller bandwidths of upwelling relative to downwelling light near the water surface. In deeper water, by contrast, the spectra of both upwelling and downwelling irradiance are narrowed to the most penetrating components in the green spectral range. Reflectance of PAR was significantly correlated with chlorophyll concentration and varied from ∼ 1% and ∼1-% at low and high phytoplankton biomass, respectively. Over the spectrum, reflectance exhibited a maximum in the green range. Moreover, in deeper layers, a red maximum was observed which is attributed to natural fluorescence by phytoplankton chlorophyll.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Hydrobiologia 344 (1997), S. 41-56 
    ISSN: 1573-5117
    Keywords: underwater light field ; spectral water transparency ; UV-A ; chlorophyll absorption ; natural fluorescence ; Antarctica
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The underwater light field in the Bellingshausen andAdmundsen Seas was characterised using data collectedduring the R/V Polarstern cruise ANT XI/3, from12.1.94 to 27.3.94. The euphotic zone varied from 24to 100 m depth. Spectral diffuse vertical attenuationcoefficients (K d (λ))were determined for 12narrow wavebands as well as for photosyntheticallyavailable radiation (PAR, 400–700 nm): K d (490)ranged from 0.03 to 0.26 m™1; K d (550) from0.04 to 0.17 m™1; K d (683) from 0.04 to0.17 m™1; and K d (PAR) varied from 0.02 to0.25 m™1. K d (λ) for wavelengths centred at412 nm, 443 nm, 465 nm, 490 nm, 510 nm, 520 nm and550 nm were significantly correlated with chlorophyllconcentration (ranging from 0.1 to 6 mg m™3). Thevertical attenuation coefficients for 340 nm and380 nm ranged from 0.10 to 0.69 m™1 and from 0.05to 0.34 m™1, respectively, and were also highlycorrelated with chlorophyll concentrations. These K d values indicate that the 1% penetration depthmay reach maxima of 46 m and 92 m for 340 nm and380 nm, respectively. The spectral radiancereflectances (Rr(λ)) for 443 nm, 510 nm and 550 nmwere less than 0.01 sr™1. Rr(λ) for 665 nm and683 nm increased with depth up to 0.2 sr™1 because ofchlorophyll fluorescence. Using a model that predicts downwardirradiances by taking into account the attenuation bywater and absorption by chlorophyll, we show thatchlorophyll fluorescence has a significant influenceon the red downward irradiance (E d (633, 665, 683))in deeper layers. The ability of the phytoplanktonpopulation to influence the light environment byautofluorescence and absorption processes depends onthe light conditions and on the photoacclimation ofthe cells, represented by the in vivo crosssection absorption coefficient of chlorophyll (a*). Theobtained mean chlorophyll-specific light attenuationcoefficients of phytoplankton in situ (k d ) are higherthan the in vivo absorption coefficient of chlorophyll,more than to be excepted from the scattering. a*(λ), m2 mg chl™1, decreased due topackaging effect with increasing chlorophyllconcentrations.
    Type of Medium: Electronic Resource
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...