Skip to main content
Log in

The underwater light field in the Bellingshausen and Amundsen Seas (Antarctica)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The underwater light field in the Bellingshausen andAdmundsen Seas was characterised using data collectedduring the R/V Polarstern cruise ANT XI/3, from12.1.94 to 27.3.94. The euphotic zone varied from 24to 100 m depth. Spectral diffuse vertical attenuationcoefficients (K d (λ))were determined for 12narrow wavebands as well as for photosyntheticallyavailable radiation (PAR, 400–700 nm): K d (490)ranged from 0.03 to 0.26 m™1; K d (550) from0.04 to 0.17 m™1; K d (683) from 0.04 to0.17 m™1; and K d (PAR) varied from 0.02 to0.25 m™1. K d (λ) for wavelengths centred at412 nm, 443 nm, 465 nm, 490 nm, 510 nm, 520 nm and550 nm were significantly correlated with chlorophyllconcentration (ranging from 0.1 to 6 mg m™3). Thevertical attenuation coefficients for 340 nm and380 nm ranged from 0.10 to 0.69 m™1 and from 0.05to 0.34 m™1, respectively, and were also highlycorrelated with chlorophyll concentrations. These K d values indicate that the 1% penetration depthmay reach maxima of 46 m and 92 m for 340 nm and380 nm, respectively. The spectral radiancereflectances (Rr(λ)) for 443 nm, 510 nm and 550 nmwere less than 0.01 sr™1. Rr(λ) for 665 nm and683 nm increased with depth up to 0.2 sr™1 because ofchlorophyll fluorescence. Using a model that predicts downwardirradiances by taking into account the attenuation bywater and absorption by chlorophyll, we show thatchlorophyll fluorescence has a significant influenceon the red downward irradiance (E d (633, 665, 683))in deeper layers. The ability of the phytoplanktonpopulation to influence the light environment byautofluorescence and absorption processes depends onthe light conditions and on the photoacclimation ofthe cells, represented by the in vivo crosssection absorption coefficient of chlorophyll (a*). Theobtained mean chlorophyll-specific light attenuationcoefficients of phytoplankton in situ (k d ) are higherthan the in vivo absorption coefficient of chlorophyll,more than to be excepted from the scattering. a*(λ), m2 mg chl™1, decreased due topackaging effect with increasing chlorophyllconcentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrigo, K. R., 1994. Impact of ozone depletion on phytoplankton growth in the Southern Ocean: large-scale spatial and temporal variability. Mar. Ecol. Prog. Ser. 114: 1–12.

    Google Scholar 

  • Arrigo, K. R. & C. R. McClain, 1994. Spring phytoplankton production in the Western Ross Sea. Science 266: 261–263.

    Google Scholar 

  • Baar, H. J. W. de, J. T. M. Jong de, D. C. E. Bakker, B. M., Loscher, C. Veth, U. Bathman & V. S. Smetacek, 1995. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373: 412–415.

    Google Scholar 

  • Bannister, T. T., 1974. Production equation in terms of chlorophyll concentration, quantum yield, and upper limit to production. Limnol. Oceanogr. 19: 1–12.

    Google Scholar 

  • Berner, T., K. Wyman, Z. Dubinsky & P. G. Falkowski, 1989. Photoadaptation and the ‘package effect’ in Dunaliella tertioleca (Chlorophyeae). J. Phycol. 25: 70–78.

    Google Scholar 

  • Bricaud, A. & D. Stramski, 1990. Spectral absorption coefficients of living phytoplankton and nonalgal biogenous matter: a comparison between the Peru upwelling area and the Sargasso sea. Limnol. Ocanogr. 35: 562–582.

    Google Scholar 

  • Bristow, M., D. Nielsen, D. Bundy & R. Furtek, 1981. Use of water Raman emission to correct airborne laser fluorosensor data for effects of water optical attenuation. Appl. Opt. 20: 2889–2906.

    Google Scholar 

  • Dubinsky, Z., 1992. The functional and optical absorption cross–sections of phytoplankton photosynthesis. In Falkowski, P. G. & A. D. Woodhead (eds), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York: 31–45.

    Google Scholar 

  • El Sayed, E. Z., 1970. On productivity of the Southern Ocean (Atlantic and Pacific sectors). In Holdgate, M. W. (ed.), Antarctic Ecology. Academic Press, New York: 119–135.

    Google Scholar 

  • Fenton, N., J. Priddle & P. Tett, 1994. Regional variations in biooptical properties of the surface waters in the Southern ocean. Ant. Sci. 6: 443–448.

    Google Scholar 

  • Jerlov, N. G., 1976. Elsevier Oceanography Series, 14. Marine Optics. Elsevier Amsterdam, 231 pp.

    Google Scholar 

  • Helbling, W., V. Villafane & O. Holm-Hansen, 1994. Effect of ultraviolet radiation on Antarctic marine phytoplankton photosynthesis with particular attention to the influence of mixing. In Weiler, C. S. & P. A. Penhale (eds), Ultraviolet Radiation in Antarctica: Measurements and Biological Effects. Antarctic Research Series 62, American Geophysical Union Washington: 207–227.

    Google Scholar 

  • Holm-Hansen, O., E. W. Helbling, & D. Lubin, 1993. Ultraviolet radiation in Antarctica: inhibition of primary production. Photocem. Photobiol. 58: 567–570.

    Google Scholar 

  • Holm-Hansen, O., A. F. Amos, N. S. Silva, V. Villafane, & E. W. Helbing, 1994. In situevidence for a nutrient limitation of phytoplankton growth in pelagic Antarctic waters. Ant. Sci. 6: 315–324.

    Google Scholar 

  • Kiefer, D. A. & J. B. Soohoo, 1982. Spectral absorption by marine particles of coastal waters of Baja California. Limnol. Oceanogr. 27: 492–499.

    Google Scholar 

  • Kirk, J. T. O., 1994. Light and photosynthesis in aquatic ecosystems. Cambridge University Press, London, 509 pp.

    Google Scholar 

  • Konig Lango, G., 1994. The meteorological data of the Georg-von Neumayer Station (Antarctica) for 1988, 1989, 1990 and 1991. Reports on Polar Research Vol. 116. Alfred Wegener Institute for Polar and Marine Research. Bremerhaven. Germany, 70 pp.

    Google Scholar 

  • Lizotte, M. P. & J. C. Priscu, 1992. Spectral irradiance and biooptical properties in perennially ice-covered lakes of the dry valleys (McMurdo Sound, Antarctica). Antarctic Res. Ser. 57: 1–14.

    Google Scholar 

  • Longhurst, A., S. Sathyendranath, T. Platt & C. Caverhill, 1995. An estimate of global primary production in the ocean from satellite radiometer data. J. Plankton Res. 17: 1245–1271.

    Google Scholar 

  • Mitchell, B. G & D. A. Kiefer, 1988. Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton. Deep-Sea Res. 35: 639–663.

    Google Scholar 

  • Mitchell, B. G. & O. Holm-Hansen, 1991. Bio-Optical properties of Antarctic Peninsula waters: differentiation from temperate ocean models. Deep Sea Res. 38: 1009–1028.

    Google Scholar 

  • Mitchell, B. G., E. A. Brody, O. Holm-Hansen, C. McClain & J. Bishop, 1991. Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean. Limnol. Oceanogr. 36: 1662–1677.

    Google Scholar 

  • Morel, A., 1988. Optical modelling of the upper ocean in relation to its biogenous matter content (Case I Waters). J. geophys. Res. 93: 10749–10768.

    Google Scholar 

  • Morel, A. & L. Prieur, 1977. Analysis of variations in ocean color. Limnol Oceanogr. 22: 709–722.

    Google Scholar 

  • Prezelin, B. B., N. P. Boucher, & R. C. Smith, 1994. Marine primary production under the influence of the Antarctic ozone hole: ICECOLORS ’90. In Weiler, C. S. & P. A. Penhale (eds), Ultraviolet Radiation in Antarctica: Measurements and Biological Effects, Antarctic Research Series 62, American Geophysical Union Washington: 159–186.

    Google Scholar 

  • Roesler, C. S. &. M. J. Perry, 1989. Modelling in situphytoplankton absorption from total absorption spectra in productive inland marine waters. Limnol. Oceanogr. 34: 1510–1523.

    Google Scholar 

  • Schmidt, T. & G. Konig Lango, 1994. Radiation measurements at the German Antarctic Station Neumayer 1982–1992. Reports on Polar Research Vol. 146. Alfred Wegener Institute for Polar and Marine Research. Bremerhaven. Germany, 66 pp.

    Google Scholar 

  • Siegel, D. A. & T. D. Dickey, 1987. Observations of the vertical structure of the diffuse attenuation coefficient spectrum. Deep Sea Res. 34: 547–563.

    Google Scholar 

  • Smith, R. C. & K. S. Baker, 1978. The bio-optical state of ocean waters and remonte sensing. Limnol. Oceanogr. 23: 247–259.

    Google Scholar 

  • Smith, R. C. & K. S. Baker, 1981. Optical properties of the clearest natural waters (200–800 nm). Appl. Opt. 20: 177–184.

    Google Scholar 

  • Smith, R. C., B. B. Prezlin, K. S. Baker, R. R. Bidigare, N. P. Bocher, T. Coley, D. Karentz, S. MacIntyre, H. A. Matlick, D. Menzies, M. Ondrusek, Z. Wan, & K. J. Waters, 1992a. Ozone depletion; ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255: 952–959.

    Google Scholar 

  • Smith, R. C., Z. Wan, & K. S. Baker, 1992b. Ozone depletion in Antarctica: modelling its effect on solar UV irradiance under clear sky conditions. J. geophys. Res. 97: 7383–7397.

    Google Scholar 

  • Stambler, N., R. Reynolds, A. Bracher, U. Hoge & M. M. Tilzer, 1996. Biooptic. In Miller, H. & H. Grobe (eds), The Expedition Antarktis–XI/3 of the RV "Polarstern": in 1994. Reports on Polar Research Vol. 188. Alfred Wegener Institute for Polar and Marine Research. Bremerhaven. Germany: 58–64.

    Google Scholar 

  • Tilzer, M. M., W. W. Gieskes, R. Heusel, & N. Fenton, 1994. The impact of phytoplankton on spectral water transparency in the Southern Ocean: implications for primary productivity. Polar Biol. 14: 127–136.

    Google Scholar 

  • Tilzer, M. M., N. Stambler & C. Lovengreen, 1995. The role of phytoplankton in determining the underwater light climate in Lake Constance. Hydrobiologia 316: 161–172.

    Google Scholar 

  • Walker, R. E., 1994. Marine light field statistics. John Wiley & Sons, INC. New York, 675 pp.

    Google Scholar 

  • Weiler, C. S. & P. A. Penhale (eds), 1994. Ultraviolet radiation in Antarctica: measurements and biological effects. Antarctic Research Series 62. American Geophysical Union Washington, 257 pp.

    Google Scholar 

  • Yentsch C. S. & C. M. Yentsch, 1979. Fluorescence spectral signatures: the characterization of phytoplankton populations by the use of excitation and emission spectra. J. Mar. Res. 37: 471–483.

    Google Scholar 

  • Yentsch C. S. & C. M. Yentsch, 1982. The attenuation of light by marine phytoplankton with specific reference to the absorption of near–UV radiation. In Calkins, J. (ed.), The Role of Solar Ultraviolet Radiation in Marine Ecosystem, Plenum Press, New York: 691–700.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stambler, N., Lovengreen, C. & Tilzer, M.M. The underwater light field in the Bellingshausen and Amundsen Seas (Antarctica). Hydrobiologia 344, 41–56 (1997). https://doi.org/10.1023/A:1002993925441

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1002993925441

Navigation