GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Meteorological Society ; 2002
    In:  Journal of Climate Vol. 15, No. 23 ( 2002-12), p. 3361-3378
    In: Journal of Climate, American Meteorological Society, Vol. 15, No. 23 ( 2002-12), p. 3361-3378
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2002
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Climate, American Meteorological Society, Vol. 14, No. 7 ( 2001-04), p. 1479-1498
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2001
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2010
    In:  Journal of Climate Vol. 23, No. 3 ( 2010-02-01), p. 559-581
    In: Journal of Climate, American Meteorological Society, Vol. 23, No. 3 ( 2010-02-01), p. 559-581
    Abstract: The dynamical response of the marine atmospheric boundary layer (MABL) to mesoscale sea surface temperature (SST) perturbations is investigated over the Agulhas Return Current during winter from a 1-month, high-resolution, three-dimensional simulation using the Weather Research and Forecasting (WRF) mesoscale model. A steady lower boundary condition for July 2002 is obtained using SST measurements from the Advanced Microwave Scanning Radiometer on the Earth Observing System (EOS)–Aqua satellite (AMSR-E). The WRF models’ ability to accurately simulate the SST-induced surface wind response is demonstrated from a comparison with satellite surface wind observations from the SeaWinds scatterometer on the Quick Scatterometer (QuikSCAT) satellite. Relevant features of this simulation include a quasi-periodic distribution of mesoscale SST perturbations with spatial scales ∼200 km and strong winds that lead to a large surface sensible heat flux response, whose broad range of 80–100 W m−2 between warm and cool SST perturbations is much larger than seen in most previous simulations of mesoscale wind–SST coupling. This simulation provides the first realistic example of vertical turbulent redistribution of momentum driven by the SST-induced surface heating perturbations acting in concert with the SST-induced pressure gradients to accelerate near-surface flow toward warm water and decelerate near-surface flow toward cool water. This simulation is also the first example of a near-surface wind speed response to mesoscale SST perturbations that differs qualitatively and substantially from the vertically averaged MABL wind response. In the vertically averaged MABL momentum budget, the surface wind stress acts as a drag on the SST-induced perturbation flow as it is being accelerated by SST-induced pressure gradients. However, only in the middle and upper reaches of the MABL does the turbulent stress divergence act as a drag on the SST-induced winds perturbations in this simulation. These mesoscale SST perturbations are also shown to modify the wind direction within the MABL. Dynamically, this is accomplished through SST-induced perturbations to the crosswind components of the pressure gradient, turbulent stress divergence, and the Coriolis force.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2010
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 2009
    In:  Journal of Climate Vol. 22, No. 1 ( 2009-01-01), p. 146-164
    In: Journal of Climate, American Meteorological Society, Vol. 22, No. 1 ( 2009-01-01), p. 146-164
    Abstract: This study evaluates the impacts of sea surface temperature (SST) specification and grid resolution on numerical simulations of air–sea coupling near oceanic fronts through analyses of surface winds from the European Centre for Medium-Range Weather Forecasts (ECMWF) model. The 9 May 2001 change of the boundary condition from the Reynolds SST analyses to the NOAA Real-Time Global (RTG) SST in the ECMWF model resulted in an abrupt increase in mesoscale variance of the model surface winds over the ocean. In contrast, the 21 November 2000 change of the grid resolution resulted in an abrupt increase in mesoscale variability of surface winds over mountainous regions on land but had no significant effect on winds over the ocean. To further investigate model sensitivity to the SST boundary condition and grid resolution, a series of simulations were made with the Weather Research and Forecasting (WRF) model over a domain encompassing the Agulhas return current (ARC: also called “retroflection”) region in the south Indian Ocean. Results from three WRF simulations with SST measured by the Advanced Microwave Scanning Radiometer on the Earth Observing System Aqua satellite (AMSR-E) and the Reynolds and RTG SST analyses indicate the vital importance of the resolution of the SST boundary condition for accurate simulation of the air–sea coupling between SST and surface wind speed. WRF simulations with grid spacings of 40 and 25 km show that the latter increased energy only on scales shorter than 250 km. In contrast, improved resolution of SST significantly increased the mesoscale variability for scales up to 1000 km. Further sensitivity studies with the WRF model conclude that the weak coupling of surface wind speeds from the ECMWF model to SST is likely attributable primarily to the weak response of vertical turbulent mixing to SST-induced stability in the parameterization of boundary layer turbulence, with an overestimation of vertical diffusion by about 60% on average in stable conditions and an underestimation by about 40% in unstable conditions.
    Type of Medium: Online Resource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2009
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 2016
    In:  Das Juristische Büro Vol. 67, No. 6 ( 2016-01-1)
    In: Das Juristische Büro, Walter de Gruyter GmbH, Vol. 67, No. 6 ( 2016-01-1)
    Type of Medium: Online Resource
    ISSN: 2366-1941 , 0931-6000
    RVK:
    Language: Unknown
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2016
    detail.hit.zdb_id: 510069-0
    detail.hit.zdb_id: 2741843-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...