GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: The American Journal of Human Genetics, Elsevier BV, Vol. 100, No. 1 ( 2017-01), p. 64-74
    Materialart: Online-Ressource
    ISSN: 0002-9297
    RVK:
    Sprache: Englisch
    Verlag: Elsevier BV
    Publikationsdatum: 2017
    ZDB Id: 1473813-2
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Institute of Electrical and Electronics Engineers (IEEE) ; 2017
    In:  IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Vol. 10, No. 5 ( 2017-5), p. 2165-2185
    In: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Institute of Electrical and Electronics Engineers (IEEE), Vol. 10, No. 5 ( 2017-5), p. 2165-2185
    Materialart: Online-Ressource
    ISSN: 1939-1404 , 2151-1535
    Sprache: Unbekannt
    Verlag: Institute of Electrical and Electronics Engineers (IEEE)
    Publikationsdatum: 2017
    ZDB Id: 2457423-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2015
    In:  Journal of Physical Oceanography Vol. 45, No. 1 ( 2015-01), p. 104-132
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 45, No. 1 ( 2015-01), p. 104-132
    Kurzfassung: Three mechanisms for self-induced Ekman pumping in the interiors of mesoscale ocean eddies are investigated. The first arises from the surface stress that occurs because of differences between surface wind and ocean velocities, resulting in Ekman upwelling and downwelling in the cores of anticyclones and cyclones, respectively. The second mechanism arises from the interaction of the surface stress with the surface current vorticity gradient, resulting in dipoles of Ekman upwelling and downwelling. The third mechanism arises from eddy-induced spatial variability of sea surface temperature (SST), which generates a curl of the stress and therefore Ekman pumping in regions of crosswind SST gradients. The spatial structures and relative magnitudes of the three contributions to eddy-induced Ekman pumping are investigated by collocating satellite-based measurements of SST, geostrophic velocity, and surface winds to the interiors of eddies identified from their sea surface height signatures. On average, eddy-induced Ekman pumping velocities approach O (10) cm day −1 . SST-induced Ekman pumping is usually secondary to the two current-induced mechanisms for Ekman pumping. Notable exceptions are the midlatitude extensions of western boundary currents and the Antarctic Circumpolar Current, where SST gradients are strong and all three mechanisms for eddy-induced Ekman pumping are comparable in magnitude. Because the polarity of current-induced curl of the surface stress opposes that of the eddy, the associated Ekman pumping attenuates the eddies. The decay time scale of this attenuation is proportional to the vertical scale of the eddy and inversely proportional to the wind speed. For typical values of these parameters, the decay time scale is about 1.3 yr.
    Materialart: Online-Ressource
    ISSN: 0022-3670 , 1520-0485
    Sprache: Unbekannt
    Verlag: American Meteorological Society
    Publikationsdatum: 2015
    ZDB Id: 2042184-9
    ZDB Id: 184162-2
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2012
    In:  Journal of Climate Vol. 25, No. 17 ( 2012-09-01), p. 5916-5942
    In: Journal of Climate, American Meteorological Society, Vol. 25, No. 17 ( 2012-09-01), p. 5916-5942
    Kurzfassung: The responses of surface wind and wind stress to spatial variations of sea surface temperature (SST) are investigated using satellite observations of the surface wind from the Quick Scatterometer (QuikSCAT) and SST from the Advanced Microwave Scanning Radiometer on the Advanced Microwave Scanning Radiometer for Earth Observing System (EOS) (AMSR-E) Aqua satellite. This analysis considers the 7-yr period June 2002–May 2009 during which both instruments were operating. Attention is focused in the Kuroshio, North and South Atlantic, and Agulhas Return Current regions. Since scatterometer wind stresses are computed solely as a nonlinear function of the scatterometer-derived 10-m equivalent neutral wind speed (ENW), qualitatively similar responses of the stress and ENW to SST are expected. However, the responses are found to be more complicated on the oceanic mesoscale. First, the stress and ENW are both approximately linearly related to SST, despite a nonlinear relationship between them. Second, the stress response to SST is 2 to 5 times stronger during winter compared to summer, while the ENW response to SST exhibits relatively little seasonal variability. Finally, the stress response to SST can be strong in regions where the ENW response is weak and vice versa. A straightforward algebraic manipulation shows that the stress perturbations are directly proportional to the ENW perturbations multiplied by a nonlinear function of the ambient large-scale ENW. This proportionality explains why both the stress and ENW depend linearly on the mesoscale SST perturbations, while the dependence of the stress perturbations on the ambient large-scale ENW explains both the seasonal pulsing and the geographic variability of the stress response to SST compared with the less variable ENW response.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2012
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2012
    In:  Journal of Climate Vol. 25, No. 5 ( 2012-03), p. 1544-1569
    In: Journal of Climate, American Meteorological Society, Vol. 25, No. 5 ( 2012-03), p. 1544-1569
    Kurzfassung: The surface wind and stress responses to sea surface temperature (SST) are examined using collocated moored buoy and satellite observations in the Gulf Stream and the eastern equatorial Pacific. Using 17 buoy pairs, differences in the wind speed, 10-m equivalent neutral wind speed (ENW), and surface wind stress magnitude between two buoys separated by between 150 and 350 km were all found to be highly correlated to, and satisfy linear relations with, the SST difference on time scales longer than 10 days. This wind–SST coupling is consistent with previous analyses of spatially high-pass-filtered satellite ENW and SST fields. For all buoy pairs, the ENW and wind speed responses to SST differ by only 10%–30%, indicating that the ENW and stress responses to SST are attributable primarily to the response of the actual surface wind speed to SST rather than to stability. This result clarifies the dynamical pathway of the wind–SST coupling on the oceanic mesoscale. This buoy-pair methodology is used further to evaluate the ENW–SST coupling derived from collocated satellite observations of ENW by the Quick Scatterometer (QuikSCAT) and SST by the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) on board the Aqua satellite. Overall, the satellite and buoy ENW responses to SST compare well, with normalized mean differences (satellite minus buoy) of 17% over the Gulf Stream and −31% and 2% over the southern and northern sides of the equatorial Pacific, respectively. Finally, seasonal variability of the large-scale ENW is shown to modulate the wind stress response to SST, whereby stronger winter wind enhances the stress response by a factor of ~2 relative to the ENW response.
    Materialart: Online-Ressource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2012
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2005
    In:  Journal of Climate Vol. 18, No. 14 ( 2005-07-15), p. 2706-2723
    In: Journal of Climate, American Meteorological Society, Vol. 18, No. 14 ( 2005-07-15), p. 2706-2723
    Kurzfassung: The marine atmospheric boundary layer (MABL) response to sea surface temperature (SST) perturbations with wavelengths shorter than 30° longitude by 10° latitude along the Agulhas Return Current (ARC) is described from the first year of SST and cloud liquid water (CLW) measurements from the Advanced Microwave Scanning Radiometer (AMSR) on the Earth Observing System (EOS) Aqua satellite and surface wind stress measurements from the QuikSCAT scatterometer. AMSR measurements of SST at a resolution of 58 km considerably improves upon a previous analysis that used the Reynolds SST analyses, which underestimate the short-scale SST gradient magnitude over the ARC region by more than a factor of 5. The AMSR SST data thus provide the first quantitatively accurate depiction of the SST-induced MABL response along the ARC. Warm (cold) SST perturbations produce positive (negative) wind stress magnitude perturbations, leading to short-scale perturbations in the wind stress curl and divergence fields that are linearly related to the crosswind and downwind components of the SST gradient, respectively. The magnitudes of the curl and divergence responses vary seasonally and spatially with a response nearly twice as strong during the winter than during the summer along a zonal band between 40° and 50°S. These seasonal variations closely correspond to seasonal and spatial variability of large-scale MABL stability and surface sensible heat flux estimated from NCEP reanalysis fields. SST-induced deepening of the MABL over warm water is evident in AMSR measurements of CLW. Typical annual mean differences in cloud thickness between cold and warm SST perturbations are estimated to be about 300 m.
    Materialart: Online-Ressource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2005
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2010
    In:  Journal of Climate Vol. 23, No. 3 ( 2010-02-01), p. 559-581
    In: Journal of Climate, American Meteorological Society, Vol. 23, No. 3 ( 2010-02-01), p. 559-581
    Kurzfassung: The dynamical response of the marine atmospheric boundary layer (MABL) to mesoscale sea surface temperature (SST) perturbations is investigated over the Agulhas Return Current during winter from a 1-month, high-resolution, three-dimensional simulation using the Weather Research and Forecasting (WRF) mesoscale model. A steady lower boundary condition for July 2002 is obtained using SST measurements from the Advanced Microwave Scanning Radiometer on the Earth Observing System (EOS)–Aqua satellite (AMSR-E). The WRF models’ ability to accurately simulate the SST-induced surface wind response is demonstrated from a comparison with satellite surface wind observations from the SeaWinds scatterometer on the Quick Scatterometer (QuikSCAT) satellite. Relevant features of this simulation include a quasi-periodic distribution of mesoscale SST perturbations with spatial scales ∼200 km and strong winds that lead to a large surface sensible heat flux response, whose broad range of 80–100 W m−2 between warm and cool SST perturbations is much larger than seen in most previous simulations of mesoscale wind–SST coupling. This simulation provides the first realistic example of vertical turbulent redistribution of momentum driven by the SST-induced surface heating perturbations acting in concert with the SST-induced pressure gradients to accelerate near-surface flow toward warm water and decelerate near-surface flow toward cool water. This simulation is also the first example of a near-surface wind speed response to mesoscale SST perturbations that differs qualitatively and substantially from the vertically averaged MABL wind response. In the vertically averaged MABL momentum budget, the surface wind stress acts as a drag on the SST-induced perturbation flow as it is being accelerated by SST-induced pressure gradients. However, only in the middle and upper reaches of the MABL does the turbulent stress divergence act as a drag on the SST-induced winds perturbations in this simulation. These mesoscale SST perturbations are also shown to modify the wind direction within the MABL. Dynamically, this is accomplished through SST-induced perturbations to the crosswind components of the pressure gradient, turbulent stress divergence, and the Coriolis force.
    Materialart: Online-Ressource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2010
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2009
    In:  Journal of Climate Vol. 22, No. 1 ( 2009-01-01), p. 146-164
    In: Journal of Climate, American Meteorological Society, Vol. 22, No. 1 ( 2009-01-01), p. 146-164
    Kurzfassung: This study evaluates the impacts of sea surface temperature (SST) specification and grid resolution on numerical simulations of air–sea coupling near oceanic fronts through analyses of surface winds from the European Centre for Medium-Range Weather Forecasts (ECMWF) model. The 9 May 2001 change of the boundary condition from the Reynolds SST analyses to the NOAA Real-Time Global (RTG) SST in the ECMWF model resulted in an abrupt increase in mesoscale variance of the model surface winds over the ocean. In contrast, the 21 November 2000 change of the grid resolution resulted in an abrupt increase in mesoscale variability of surface winds over mountainous regions on land but had no significant effect on winds over the ocean. To further investigate model sensitivity to the SST boundary condition and grid resolution, a series of simulations were made with the Weather Research and Forecasting (WRF) model over a domain encompassing the Agulhas return current (ARC: also called “retroflection”) region in the south Indian Ocean. Results from three WRF simulations with SST measured by the Advanced Microwave Scanning Radiometer on the Earth Observing System Aqua satellite (AMSR-E) and the Reynolds and RTG SST analyses indicate the vital importance of the resolution of the SST boundary condition for accurate simulation of the air–sea coupling between SST and surface wind speed. WRF simulations with grid spacings of 40 and 25 km show that the latter increased energy only on scales shorter than 250 km. In contrast, improved resolution of SST significantly increased the mesoscale variability for scales up to 1000 km. Further sensitivity studies with the WRF model conclude that the weak coupling of surface wind speeds from the ECMWF model to SST is likely attributable primarily to the weak response of vertical turbulent mixing to SST-induced stability in the parameterization of boundary layer turbulence, with an overestimation of vertical diffusion by about 60% on average in stable conditions and an underestimation by about 40% in unstable conditions.
    Materialart: Online-Ressource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2009
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Online-Ressource
    Online-Ressource
    American Meteorological Society ; 2010
    In:  Journal of Climate Vol. 23, No. 2 ( 2010-01-15), p. 255-281
    In: Journal of Climate, American Meteorological Society, Vol. 23, No. 2 ( 2010-01-15), p. 255-281
    Kurzfassung: The effects of surface wind speed and direction gradients on midlatitude surface vorticity and divergence fields associated with mesoscale sea surface temperature (SST) variability having spatial scales of 100–1000 km are investigated using vector wind observations from the SeaWinds scatterometer on the Quick Scatterometer (QuikSCAT) satellite and SST from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) Aqua satellite. The wind–SST coupling is analyzed over the period June 2002–August 2008, corresponding to the first 6+ years of the AMSR-E mission. Previous studies have shown that strong wind speed gradients develop in response to persistent mesoscale SST features associated with the Kuroshio Extension, Gulf Stream, South Atlantic, and Agulhas Return Current regions. Midlatitude SST fronts also significantly modify surface wind direction; the surface wind speed and direction responses to typical SST differences of about 2°–4°C are, on average, about 1–2 m s−1 and 4°–8°, respectively, over all four regions. Wind speed perturbations are positively correlated and very nearly collocated spatially with the SST perturbations. Wind direction perturbations, however, are displaced meridionally from the SST perturbations, with cyclonic flow poleward of warm SST and anticyclonic flow poleward of cool SST. Previous observational analyses have shown that small-scale perturbations in the surface vorticity and divergence fields are related linearly to the crosswind and downwind components of the SST gradient, respectively. When the vorticity and divergence fields are analyzed in curvilinear natural coordinates, the wind speed contributions to the SST-induced vorticity and divergence depend equally on the crosswind and downwind SST gradients, respectively. SST-induced wind direction gradients also significantly modify the vorticity and divergence fields, weakening the vorticity response to crosswind SST gradients while enhancing the divergence response to downwind SST gradients.
    Materialart: Online-Ressource
    ISSN: 1520-0442 , 0894-8755
    RVK:
    Sprache: Englisch
    Verlag: American Meteorological Society
    Publikationsdatum: 2010
    ZDB Id: 246750-1
    ZDB Id: 2021723-7
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Online-Ressource
    Online-Ressource
    American Geophysical Union (AGU) ; 2022
    In:  Journal of Geophysical Research: Oceans Vol. 127, No. 7 ( 2022-07)
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 127, No. 7 ( 2022-07)
    Kurzfassung: Extreme warm anomalies on time scales of 10 days to 6 months occur mostly in December through March The net surface heat flux anomalies do not explain most of the anomalous warming even when allowing for uncertainty in mixed layer depth Wind stress and stress curl weaken in the warming area suggesting reduced entrainment and Ekman pumping and perhaps mixed‐layer shoaling
    Materialart: Online-Ressource
    ISSN: 2169-9275 , 2169-9291
    Sprache: Englisch
    Verlag: American Geophysical Union (AGU)
    Publikationsdatum: 2022
    ZDB Id: 2016804-4
    ZDB Id: 161667-5
    ZDB Id: 3094219-6
    SSG: 16,13
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...