GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Geochemistry, geophysics, geosystems, Hoboken, NJ : Wiley, 2000, 10(2009), 4, 1525-2027
    In: volume:10
    In: year:2009
    In: number:4
    In: extent:9
    Beschreibung / Inhaltsverzeichnis: The present geological setting west of Svalbard closely parallels the situation off mid-Norway after the last glaciation, when crustal unloading by melting of ice induced very large earthquakes. Today, on the modern Svalbard margin, increasing bottom water temperatures are destabilizing marine gas hydrates, which are held in continental margin sediments consisting of interlayered contourite deposits and glacigenic debris flows. Both unloading earthquakes and hydrate failure have been identified as key factors causing several megalandslides off Norway during early Holocene deglaciation. The most prominent event was the Storegga Slide 8200 years B.P. which caused a tsunami up to 23 m high on the Faroe and Shetland islands. Here we show by numerical tsunami modeling that a smaller submarine landslide west of Svalbard, 100 m high and 130 km wide, would cause a tsunami capable of reaching northwest Europe and threatening coastal areas. A tsunami warning system based on tiltmeters would give a warning time of 1-4 h.
    Materialart: Online-Ressource
    Seiten: 9 , graph. Darst
    ISSN: 1525-2027
    Sprache: Englisch
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2022-09-22
    Beschreibung: Controls on the deformation pattern (shortening mode and tectonic style) of orogenic forelands during lithospheric shortening remain poorly understood. Here, we use high‐resolution 2D thermomechanical models to demonstrate that orogenic crustal thickness and foreland lithospheric thickness significantly control the shortening mode in the foreland. Pure‐shear shortening occurs when the orogenic crust is not thicker than the foreland crust or thick, but the foreland lithosphere is thin (〈70–80 km, as in the Puna foreland case). Conversely, simple‐shear shortening, characterized by foreland underthrusting beneath the orogen, arises when the orogenic crust is much thicker. This thickened crust results in high gravitational potential energy in the orogen, which triggers the migration of deformation to the foreland under further shortening. Our models present fully thick‐skinned, fully thin‐skinned, and intermediate tectonic styles in the foreland. The first tectonics forms in a pure‐shear shortening mode whereas the others require a simple‐shear mode and the presence of thick (〉∼4 km) sediments that are mechanically weak (friction coefficient 〈∼0.05) or weakened rapidly during deformation. The formation of fully thin‐skinned tectonics in thick and weak foreland sediments, as in the Subandean Ranges, requires the strength of the orogenic upper lithosphere to be less than one‐third as strong as that of the foreland upper lithosphere. Our models successfully reproduce foreland deformation patterns in the Central and Southern Andes and the Laramide province.
    Beschreibung: Key Points: Thicknesses of the orogenic crust and the foreland lithosphere control the foreland shortening mode (pure‐shear or simple‐shear). Foreland weak sediments and the upper lithosphere of the weaker orogen control the foreland tectonic style (thin‐skinned or thick‐skinned). High‐resolution geodynamic models successfully reproduce foreland deformation patterns in several natural orogen‐foreland shortening systems.
    Beschreibung: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Beschreibung: https://bitbucket.org/bkaus/LaMEM
    Beschreibung: https://doi.org/10.5281/zenodo.5963016
    Schlagwort(e): ddc:551.8
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2024-03-05
    Beschreibung: The formation of the Central Andes dates back to ∼50 Ma, but its most pronounced episode, including the growth of the Altiplano‐Puna Plateau and pulsatile tectonic shortening phases, occurred within the last 25 Ma. The reason for this evolution remains unexplained. Using geodynamic numerical modeling we infer that the primary cause of the pulses of tectonic shortening and growth of the Central Andes is the changing geometry of the subducted Nazca plate, and particularly the steepening of the mid‐mantle slab segment which results in a slowing down of the trench retreat and subsequent increase in shortening of the advancing South America plate. This steepening first happens after the end of the flat slab episode at ∼25 Ma, and later during the buckling and stagnation of the slab in the mantle transition zone. Processes that mechanically weaken the lithosphere of the South America plate, as suggested in previous studies, enhance the intensity of the shortening events. These processes include delamination of the mantle lithosphere and weakening of foreland sediments. Our new modeling results are consistent with the timing and amplitude of the deformation from geological data in the Central Andes at the Altiplano latitude.
    Beschreibung: Plain Language Summary: The Central Andes is a subduction‐type orogeny that formed as a result of the interaction between the Nazca oceanic plate and the South American continental plate over the last 50 million years. Growth of the Andes is primarily the result of crustal shortening. Nevertheless, “geological” data compiled from previous studies have shown that phases of drastic pulsatile shortening occur at 15 and 5 Ma. In this study, we used high‐resolution 2D numerical geodynamic simulations to investigate the link between oceanic and continental plate dynamics and their interaction. We find that when the oceanic plate steepens in the mantle transition zone, the trench retreat is hindered. Coupled with the weakening of the continental plate through the slab flattening and subsequent delamination of the lithospheric mantle, this leads to pulsatile shortening phases of a magnitude equivalent to that suggested by the data.
    Beschreibung: Key Points: The steepening of the slab due to slab buckling hinders the trench retreating and explains the main pulsatile phases of the deformation during the last 25 Ma. The absolute motion of the overriding plate controls the regime of subduction dynamics. Flat slab and eclogitization are required to weaken and then shorten the overriding plate when the slab steepens and the trench is hindered.
    Beschreibung: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Beschreibung: German Federal State of Brandenburg
    Beschreibung: ERC Synergy
    Beschreibung: North‐German Supercomputing Alliance
    Beschreibung: https://doi.org/10.5880/GFZ.2.5.2022.001
    Beschreibung: https://github.com/Minerallo/aspect/tree/Paper_slab_buckling_Andes
    Beschreibung: https://doi.org/10.5880/GFZ.2.5.2022.001
    Beschreibung: https://github.com/fastscape-lem/fastscapelib-fortran
    Schlagwort(e): ddc:551.8 ; Central Andes ; subduction dynamics ; geodynamics ; shortening ; steepening ; flat‐slab
    Sprache: Englisch
    Materialart: doc-type:article
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    [s.l.] : Macmillian Magazines Ltd.
    Nature 434 (2005), S. 590-597 
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] More than 50 per cent of the Earth's upper mantle consists of olivine and it is generally thought that mantle-derived melts are generated in equilibrium with this mineral. Here, however, we show that the unusually high nickel and silicon contents of most parental Hawaiian magmas are ...
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Springer
    Surveys in geophysics 15 (1994), S. 515-544 
    ISSN: 1573-0956
    Schlagwort(e): Petrophysical modeling ; thermodynamic database ; phase diagrams ; elastic properties ; petrologic interpretation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Geologie und Paläontologie , Physik
    Notizen: Abstract We use the technique of direct minimization of the Gibbs free energy of the 8-component (K2O-Na2O-Fe2O3-FeO-CaO-MgO-Al2O3-SiO2) multiphase system in order to determine the equilibrium mineral assemblages of rocks of different bulk chemical compositions equilibrated at various P-T conditions. The calculated modal compositions of rocks and experimental data on elastic moduli of single crystals are then used to calculate densities and isotropic elastic wave velocities of rocks together with their pressure and temperature derivatives. Sufficient accuracy of the calculations is confirmed by comparison with experimental data on the gabbro-eclogite transformation and precise ultrasonic measurements of elastic wave velocities in a number of magmatic and metamorphic rocks. We present calculated phase diagrams with isolines of density, elastic wave velocities, and their pressure and temperature derivatives for several anhydrous magmatic rocks, from granite to lherzolite. Density and elastic properties of rocks are controlled by their chemical compositions, especially the SiO2 content, and by P-T of equilibration, and they increase with pressure due to mineral reactions changing mineral assemblages from plagioclase-bearing and garnet-free to garnetbearing and plagioclase-free. TheV p -density correlation is high, and shows two clear trends: one for iron-poor ultramafic rocks and another for all the other rocks considered. Mineral reactions, which occur at high pressures, changeV p and density of anhydrous magmatic rocks following the well-known Birch (or a similar) law. Felsic, intermediate and mafic rocks can be well distinguished in theV p -V p /V s - diagram, although their values ofV p can be close to one another. TheV p -V p /V s -density diagrams together with calculated phase diagrams can serve as efficient instruments for petrologic interpretation of seismic velocities.
    Materialart: Digitale Medien
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2021-02-08
    Beschreibung: The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere–asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300 km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300 km, are not perturbed much when the effects of lithosphere and crust above 300 km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic topography.
    Materialart: Article , PeerReviewed
    Format: text
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 10 (Q04009).
    Publikationsdatum: 2018-03-14
    Beschreibung: [1] The present geological setting west of Svalbard closely parallels the situation off mid-Norway after the last glaciation, when crustal unloading by melting of ice induced very large earthquakes. Today, on the modern Svalbard margin, increasing bottom water temperatures are destabilizing marine gas hydrates, which are held in continental margin sediments consisting of interlayered contourite deposits and glacigenic debris flows. Both unloading earthquakes and hydrate failure have been identified as key factors causing several megalandslides off Norway during early Holocene deglaciation. The most prominent event was the Storegga Slide 8200 years B.P. which caused a tsunami up to 23 m high on the Faroe and Shetland islands. Here we show by numerical tsunami modeling that a smaller submarine landslide west of Svalbard, 100 m high and 130 km wide, would cause a tsunami capable of reaching northwest Europe and threatening coastal areas. A tsunami warning system based on tiltmeters would give a warning time of 1–4 h.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2017-01-31
    Beschreibung: The South American continent as we know it formed during the break-up of West Gondwana between 150 and 110 million years ago, when the South Atlantic Rift system evolved into the South Atlantic ocean. Using state-of-the-art global tectonic reconstructions in conjunction with numerical and analytical modelling, we investigate the geodynamics of rift systems as they evolve into an ocean basin. We find that rifts initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. In case of the split between South America and Africa, the divergence rate increased from initially 5 to 7 millimetres per year to over 40 millimetres per year within few million years. Intriguingly, abrupt rift acceleration did not only occur during the splitting of West Gondwana, but also during the separation of Australia and Antarctica, North America and Greenland, Africa and South America, in the North Atlantic or the South China Sea. We elucidate the underlying process by reproducing the rapid transition from slow to fast extension using analytical and numerical modelling with constant force boundary conditions. The mechanical models suggest that the two-phase velocity behaviour is caused by a rift-intrinsic strength–velocity feedback similar to a rope that snaps when pulled apart. This mechanism provides an explanation for several previously unexplained rapid absolute plate motion changes, offering new insights into the balance of plate driving forces through time.
    Materialart: Article , NonPeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2019-09-23
    Beschreibung: Our analysis of new bathymetric data reveals six submarine landslides at the eastern Sunda margin between central Java and Sumba Island, Indonesia. Their volumes range between 1 km³ in the Java fore-arc basin up to 20 km³ at the trench off Sumba and Sumbawa. We estimate the potential hazard of each event by modeling the corresponding tsunami and its run-up on nearby coasts. Four slides are situated remarkably close to the epicenter of the 1977 tsunamigenic Sumba M w = 8.3 earthquake. However, comparison of documented tsunami run-up heights and arrival times with our modeling results neither allows us to confirm nor can we falsify the hypothesis that the earthquake triggered these submarine landslides.
    Materialart: Article , PeerReviewed
    Format: text
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2024-02-07
    Beschreibung: The formation of the Central Andes dates back to ∼50 Ma, but its most pronounced episode, including the growth of the Altiplano-Puna Plateau and pulsatile tectonic shortening phases, occurred within the last 25 Ma. The reason for this evolution remains unexplained. Using geodynamic numerical modeling we infer that the primary cause of the pulses of tectonic shortening and growth of the Central Andes is the changing geometry of the subducted Nazca plate, and particularly the steepening of the mid-mantle slab segment which results in a slowing down of the trench retreat and subsequent increase in shortening of the advancing South America plate. This steepening first happens after the end of the flat slab episode at ∼25 Ma, and later during the buckling and stagnation of the slab in the mantle transition zone. Processes that mechanically weaken the lithosphere of the South America plate, as suggested in previous studies, enhance the intensity of the shortening events. These processes include delamination of the mantle lithosphere and weakening of foreland sediments. Our new modeling results are consistent with the timing and amplitude of the deformation from geological data in the Central Andes at the Altiplano latitude. Key Points The steepening of the slab due to slab buckling hinders the trench retreating and explains the main pulsatile phases of the deformation during the last 25 Ma The absolute motion of the overriding plate controls the regime of subduction dynamics Flat slab and eclogitization are required to weaken and then shorten the overriding plate when the slab steepens and the trench is hindered
    Materialart: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Format: video
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...