GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-01-30
    Description: These data are outputs from climate simulations carried out using HadGEM3-GC3.1 described in the associated journal article. The three simulations that constitute the STANDARD ensemble described in the article are u-as371, u-as372, u-as373, and the three simulations that comprise the GREASE ensemble in the article are labelled here as u-bj941, u-bn121 and u-bn122. Outputs from the sea ice and ocean components of the model are archived here separately (labelled '_ice' and '_ocean'). These data were produced by University of Otago, New Zealand, in collaboration with the UK Met Office for a project funded by the New Zealand Deep South National Science Challenge using the Monsoon system, a collaborative facility supplied under the Joint Weather and Climate Research Programme, a strategic partnership between the Met Office and the Natural Environment Research Council.
    Keywords: climate modeling; File format; File name; File size; HadGEM3-GC3.1; Polar; Sea ice; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 48 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-12-11
    Description: These data are outputs from climate simulations carried out using HadGEM3-GC3.1. The simulations are labelled ay187, az575, az576 and bb819, corresponding to experiments FW, FWShelf, FWBerg and FWCO2 respectivey, which are described in detail in the two associated journal articles. Some data stored here are from the southern hemisphere only, and some separate data files have global coverage. These data were produced by University of Otago, New Zealand, in collaboration with the UK Met Office for a project funded by the New Zealand Deep South National Science Challenge using the Monsoon system, a collaborative facility supplied under the Joint Weather and Climate Research Programme, a strategic partnership between the Met Office and the Natural Environment Research Council.
    Keywords: Antarctic melt; climate; Climate modelling; File format; File name; File size; HadGEM3-GC3.1; Iceberg; Ice shelf; Sea ice; Southern Ocean; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 112 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-16
    Keywords: DATE/TIME; McMurdoSeaIce_2013; McMurdo Sound; Temperature, ice/snow; Temperature probe; TP
    Type: Dataset
    Format: text/tab-separated-values, 336400 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-16
    Keywords: DATE/TIME; McMurdoSeaIce_2010; McMurdo Sound; Temperature, ice/snow; Temperature probe; TP
    Type: Dataset
    Format: text/tab-separated-values, 413744 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    INT GLACIOL SOC
    In:  EPIC3Annals of Glaciology, INT GLACIOL SOC, 62(82), ISSN: 0260-3055
    Publication Date: 2021-01-13
    Description: Basal melt of ice shelves is not only an important part of Antarctica’s ice-sheet mass budget, but it is also the origin of one of the most peculiar types of sea ice found in the polar oceans: platelet ice. In many regions around coastal Antarctica, tiny ice crystals form and grow in supercooled plumes of Ice Shelf Water, releasing heat into the surrounding ocean. They usually rise towards the surface, eventually becoming trapped under an ice shelf as marine ice. Frequently, masses of those crystals are advected out of the ice-shelf cavity, and accumulate below a solid sea-ice cover to form a semiconsolidated layer. When the overlying sea ice grows into this so-called sub-ice platelet layer, the loose crystals are consolidated, adding additional thickness to the sea ice. These phenomena are generally referred to as platelet ice, although confusion about the terminology is widespread in the literature. The presence of platelet ice has a profound impact on sea-ice properties and processes in several regions of Antarctica, with numerous implications for the local polar marine biosphere. Most notably, sub-ice platelet layers provide a stable, sheltered, nutrient- and food-rich habitat which usually results in a highly productive and uniquely adapted ecosystem. It has also been hypothesised that platelet ice may be an indicator of the state of an ice shelf, although comprehensive time series are limited to the Ross Sea. This paper clears up the terminology by providing exact definitions of the relevant terms.We review platelet-ice formation, observational methods as well as geographical and seasonal occurrence. The physical properties and ecological implications are merged in a way understandable for physicists and biologists alike, to lay the foundation for the interdisciplinary research that is necessary to tackle the current knowledge gaps.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Newman, L., Heil, P., Trebilco, R., Katsumata, K., Constable, A., van Wijk, E., Assmann, K., Beja, J., Bricher, P., Colemans, R., Costa, D., Diggs, S., Farneti, R., Fawcett, S., Gille, S. T., Hendry, K. R., Henley, S., Hofmann, E., Maksym, T., MazIoff, M., Meijers, A., Meredith, M. M., Moreau, S., Ozsor, B., Robertson, R., Schloss, I., Schofield, O., Shi, J., Sikes, E., Smith, I. J., Swart, S., Wahlin, A., Williams, G., Williams, M. J. M., Herraiz-Borreguero, L., Kern, S., Liesers, J., Massom, R. A., Melbourne-Thomas, J., Miloslavich, P., & Spreen, G. Delivering sustained, coordinated, and integrated observations of the Southern Ocean for global impact. Frontiers in Marine Science, 6, (2019): 433, doi:10.3389/fmars.2019.00433.
    Description: The Southern Ocean is disproportionately important in its effect on the Earth system, impacting climatic, biogeochemical, and ecological systems, which makes recent observed changes to this system cause for global concern. The enhanced understanding and improvements in predictive skill needed for understanding and projecting future states of the Southern Ocean require sustained observations. Over the last decade, the Southern Ocean Observing System (SOOS) has established networks for enhancing regional coordination and research community groups to advance development of observing system capabilities. These networks support delivery of the SOOS 20-year vision, which is to develop a circumpolar system that ensures time series of key variables, and delivers the greatest impact from data to all key end-users. Although the Southern Ocean remains one of the least-observed ocean regions, enhanced international coordination and advances in autonomous platforms have resulted in progress toward sustained observations of this region. Since 2009, the Southern Ocean community has deployed over 5700 observational platforms south of 40°S. Large-scale, multi-year or sustained, multidisciplinary efforts have been supported and are now delivering observations of essential variables at space and time scales that enable assessment of changes being observed in Southern Ocean systems. The improved observational coverage, however, is predominantly for the open ocean, encompasses the summer, consists of primarily physical oceanographic variables, and covers surface to 2000 m. Significant gaps remain in observations of the ice-impacted ocean, the sea ice, depths 〉2000 m, the air-ocean-ice interface, biogeochemical and biological variables, and for seasons other than summer. Addressing these data gaps in a sustained way requires parallel advances in coordination networks, cyberinfrastructure and data management tools, observational platform and sensor technology, two-way platform interrogation and data-transmission technologies, modeling frameworks, intercalibration experiments, and development of internationally agreed sampling standards and requirements of key variables. This paper presents a community statement on the major scientific and observational progress of the last decade, and importantly, an assessment of key priorities for the coming decade, toward achieving the SOOS vision and delivering essential data to all end-users.
    Description: PH was supported by the Australian Government’s Cooperative Research Centers Program through the Antarctica Climate and Ecosystems Cooperative Research Centre, and the International Space Science Institute’s team grant #406. This work contributes to the Australian Antarctica Science projects 4301 and 4390.
    Keywords: Southern Ocean ; observations ; modeling ; ocean–climate interactions ; ecosystem-based management ; long-term monitoring ; international coordination
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Stammer, D., Bracco, A., AchutaRao, K., Beal, L., Bindoff, N. L., Braconnot, P., Cai, W., Chen, D., Collins, M., Danabasoglu, G., Dewitte, B., Farneti, R., Fox-Kemper, B., Fyfe, J., Griffies, S. M., Jayne, S. R., Lazar, A., Lengaigne, M., Lin, X., Marsland, S., Minobe, S., Monteiro, P. M. S., Robinson, W., Roxy, M. K., Rykaczewski, R. R., Speich, S., Smith, I. J., Solomon, A., Storto, A., Takahashi, K., Toniazzo, T., & Vialard, J. Ocean climate observing requirements in support of climate research and climate information. Frontiers in Marine Science, 6, (2019): 444, doi:10.3389/fmars.2019.00444.
    Description: Natural variability and change of the Earth’s climate have significant global societal impacts. With its large heat and carbon capacity and relatively slow dynamics, the ocean plays an integral role in climate, and provides an important source of predictability at seasonal and longer timescales. In addition, the ocean provides the slowly evolving lower boundary to the atmosphere, driving, and modifying atmospheric weather. Understanding and monitoring ocean climate variability and change, to constrain and initialize models as well as identify model biases for improved climate hindcasting and prediction, requires a scale-sensitive, and long-term observing system. A climate observing system has requirements that significantly differ from, and sometimes are orthogonal to, those of other applications. In general terms, they can be summarized by the simultaneous need for both large spatial and long temporal coverage, and by the accuracy and stability required for detecting the local climate signals. This paper reviews the requirements of a climate observing system in terms of space and time scales, and revisits the question of which parameters such a system should encompass to meet future strategic goals of the World Climate Research Program (WCRP), with emphasis on ocean and sea-ice covered areas. It considers global as well as regional aspects that should be accounted for in designing observing systems in individual basins. Furthermore, the paper discusses which data-driven products are required to meet WCRP research and modeling needs, and ways to obtain them through data synthesis and assimilation approaches. Finally, it addresses the need for scientific capacity building and international collaboration in support of the collection of high-quality measurements over the large spatial scales and long time-scales required for climate research, bridging the scientific rational to the required resources for implementation.
    Description: This work was partly supported by the DFG funded excellence center CliSAP of the Universituat Hamburg (DS). AB was supported by the National Science Foundation through award NSF-1658174 and by the NOAA through award NA16OAR4310173. SM was supported by the Earth Systems and Climate Change Hub of the Australian Government’s National Environmental Science Program.
    Keywords: Ocean observing system ; Ocean climate ; Earth observations ; In situ measurements ; Satellite observations ; Ocean modeling ; Climate information
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-01-06
    Description: 〈jats:p〉Abstract. As the climate warms, the grounded ice sheet and floating ice shelves surrounding Antarctica are melting and releasing additional freshwater into the Southern Ocean. Nonetheless, almost all existing coupled climate models have fixed ice sheets and lack the physics required to represent the dominant sources of Antarctic melt. These missing ice dynamics represent a key uncertainty that is typically unaccounted for in current global climate change projections. Previous modelling studies that have imposed additional Antarctic meltwater have demonstrated regional impacts on Southern Ocean stratification, circulation, and sea ice, as well as remote changes in atmospheric circulation, tropical precipitation, and global temperature. However, these previous studies have used widely varying rates of freshwater forcing, have been conducted using different climate models and configurations, and have reached differing conclusions on the magnitude of meltwater–climate feedbacks. The Southern Ocean Freshwater Input from Antarctica (SOFIA) initiative brings together a team of scientists to quantify the climate system response to Antarctic meltwater input along with key aspects of the uncertainty. In this paper, we summarize the state of knowledge on meltwater discharge from the Antarctic ice sheet and ice shelves to the Southern Ocean and explain the scientific objectives of our initiative. We propose a series of coupled and ocean–sea ice model experiments, including idealized meltwater experiments, historical experiments with observationally consistent meltwater input, and future scenarios driven by meltwater inputs derived from stand-alone ice sheet models. Through coordinating a multi-model ensemble of simulations using a common experimental design, open data archiving, and facilitating scientific collaboration, SOFIA aims to move the community toward better constraining our understanding of the climate system response to Antarctic melt. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: The additional water from the Antarctic ice sheet and ice shelves due to climate‐induced melt can impact ocean circulation and global climate. However, the major processes driving melt are not adequately represented in Coupled Model Intercomparison Project phase 6 (CMIP6) models. Here, we analyze a novel multi‐model ensemble of CMIP6 models with consistent meltwater addition to examine the robustness of the modeled response to meltwater, which has not been possible in previous single‐model studies. Antarctic meltwater addition induces a substantial weakening of open‐ocean deep convection. Additionally, Antarctic Bottom Water warms, its volume contracts, and the sea surface cools. However, the magnitude of the reduction varies greatly across models, with differing anomalies correlated with their respective mean‐state climatology, indicating the state‐dependency of the climate response to meltwater. A better representation of the Southern Ocean mean state is necessary for narrowing the inter‐model spread of response to Antarctic meltwater. Plain Language Summary The melting of the Antarctic ice sheet and ice shelves can have significant impacts on ocean circulation and thermal structure, but current climate models do not fully capture these effects. In this study, we analyze seven climate models to understand how they respond to the addition of meltwater from Antarctica. We find that the presence of Antarctic meltwater leads to a significant weakening of deep convection in the open ocean. The meltwater also causes Antarctic Bottom Water to warm and its volume to decrease, while the sea surface cools and sea ice expands. However, the magnitude of the response to meltwater varies across models, suggesting that the mean‐state conditions of the Southern Ocean play a role. A better representation of the mean state and the inclusion of Antarctic meltwater in climate models will help reduce uncertainties and improve our understanding of the impact of Antarctic meltwater on climate. Key Points Antarctic meltwater substantially reduces the strength of simulated Southern Ocean deep convection in climate models The additional meltwater induces Antarctic Bottom Water warming and contraction, with dense water classes converting to lighter ones Differences in the magnitude of these responses between models can be partly attributed to their different base states
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...