GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Publisher
Years
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Environmental Microbiology 14 (2012): 140-146, doi:10.1111/j.1462-2920.2011.02554.x.
    Description: The above-ground surfaces of terrestrial plants, the phyllosphere, comprise the main interface between the terrestrial biosphere and solar radiation. It is estimated to host up to 1026 microbial cells that may intercept part of the photon flux impinging on the leaves. Based on 454- pyrosequencing generated metagenome data, we report on the existence of diverse microbial rhodopsins in five distinct phyllospheres from tamarisk (Tamarix nilotica), soybean (Glycine max), Arabidopsis (Arabidopsis thaliana), clover (Trifolium repens) and rice (Oryza sativa). Our findings, for the first time describing microbial rhodopsins from non-aquatic habitats, point toward the potential coexistence of microbial rhodopsin-based phototrophy and plant chlorophyll-based photosynthesis, with the different pigments absorbing non-overlapping fractions of the light spectrum.
    Description: This work was supported in part by a grant from Bridging the Rift Foundation (O.B. & S.B.), Israel Science Foundation grant 1203/06 (O.B.), the Gruss-Lipper Family Foundation at MBL (O.M.F., S.B. & A.F.P.), a US-Israel Binational Science Foundation grant 2006324 (S.B.), and DOE National Institutes of Health Grant R37GM27750, Department of Energy Grant DE-FG02-07ER15867, and endowed chair AU-0009 from the Robert A. Welch Foundation (J.L.S.).
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-11-28
    Description: Background: Seedless grapes are greatly appreciated for fresh and dry fruit consumption. Parthenocarpy and stenospermocarpy have been described as the main phenomena responsible for seedlessness in Vitis vinifera. However, the key genes underpinning molecular and cellular processes that play a significant role in seed development are not well characterized. To identify important regulators and mechanisms that may be altered in the seedless phenotype, we performed a comprehensive transcriptional analysis to compare the transcriptomes of a popular seeded wine cultivar (wild-type) and its seedless somatic variant (mutant) at three key developmental stages. Results: The transcriptomes revealed by Illumina mRNA-Seq technology had approximately 98% of grapevine annotated transcripts and about 80% of them were commonly expressed in the two lines. Differential gene expression analysis revealed a total of 1075 differentially expressed genes (DE) in the pairwise comparison of developmental stages, which included DE genes specific to the wild-type background, DE genes specific to the mutant background and DE genes commonly shared in both backgrounds. The analysis of differential expression patterns and functional category enrichment of wild-type and mutant DE genes highlighted significant coordination and enrichment of pollen and ovule developmental pathways. The expression of some selected DE genes was further confirmed by real-time RT-PCR analysis. Conclusions: This study represents the most comprehensive attempt to characterize the genetic bases of seed formation in grapevine. With a high throughput method, we have shown that a seeded wine grape and its seedless somatic variant are similar in several biological processes. Nevertheless, we could identify an inventory of genes with altered expression in the mutant compared to the wild-type, which may be responsible for the seedless phenotype. The genes located within known genomic regions regulating seed content may be used for the development of molecular tools to assist table grape breeding. Therefore the data reported here have provided a rich genomic resource for practical use and functional characterization of the genes that potentially underpin seedlessness in grapevine.
    Electronic ISSN: 1471-2164
    Topics: Biology
    Published by BioMed Central
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...