GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-01-31
    Description: The Mediterranean community represented in this paper is the result of more than 30 years of EU and nationally funded coordination, which has led to key contributions in science concepts and operational initiatives. Together with the establishment of operational services, the community has coordinated with universities, research centers, research infrastructures and private companies to implement advanced multi-platform and integrated observing and forecasting systems that facilitate the advancement of operational services, scientific achievements and mission-oriented innovation. Thus, the community can respond to societal challenges and stakeholders needs, developing a variety of fit-for-purpose services such as the Copernicus Marine Service. The combination of state-of-the-art observations and forecasting provides new opportunities for downstream services in response to the needs of the heavily populated Mediterranean coastal areas and to climate change. The challenge over the next decade is to sustain ocean observations within the research community, to monitor the variability at small scales, e.g., the mesoscale/submesoscale, to resolve the sub-basin/seasonal and inter-annual variability in the circulation, and thus establish the decadal variability, understand and correct the model-associated biases and to enhance model-data integration and ensemble forecasting for uncertainty estimation. Better knowledge and understanding of the level of Mediterranean variability will enable a subsequent evaluation of the impacts and mitigation of the effect of human activities and climate change on the biodiversity and the ecosystem, which will support environmental assessments and decisions. Further challenges include extending the science-based added-value products into societal relevant downstream services and engaging with communities to build initiatives that will contribute to the 2030 Agenda and more specifically to SDG14 and the UN's Decade of Ocean Science for sustainable development, by this contributing to bridge the science-policy gap. The Mediterranean observing and forecasting capacity was built on the basis of community best practices in monitoring and modeling, and can serve as a basis for the development of an integrated global ocean observing system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-18
    Description: The formation of intermediate and deep water masses is one of the most important processes occurring in the Mediterranean Sea, being a component of its general overturning circulation, and it has crucial implications on the ecosystem. The objective of the proposed work is to revise the main water mass formation events occurred during the latest 30 years (1987-2016) in the Mediterranean Sea and analyse their impact on biogeochemical properties considering the CMEMS Med-MFC physical and biogeochemical reanalysis data sets (https://doi.org/10.25423/medsea_reanalysis_phys_006_004 and https://doi.org/10.25423/MEDSEA_REANALYSIS_BIO_006_008 respectively). The analysis takes into consideration the four regions where events of intermediate and deep water formation are known to occur: 1) the Gulf of Lions for the Western Mediterranean Deep Waters; 2) the Southern Adriatic Pit for the Eastern Mediterranean Deep Waters; 3) the Cretan Sea for Cretan Intermediate Waters and Cretan Deep Waters; 4) the Rhodes Gyre, the area of formation of the so- called Levantine Intermediate Waters and Levantine Deep Waters. Annual water mass formation rates have been computed using daily mixed layer depth estimates considering the annual maximum volume of water above mixed layer depth with potential density within or higher than specific thresholds, and then divided by seconds per year. The use of different density thresholds reported in literature to identify water masses allows to detect variations of their characteristics over time, as observed from observations. The adopted methodology might underestimate the actual water mass formation rate but, thanks to the assimilation of in situ temperature and salinity profiles and the interactive heat flux correction based on observed satellite sea surface temperature, it permits an accurate estimation of the mixed layer depth and to detect the main open ocean convection events from the selected reanalysis data set. The analysis of chlorophyll and nutrient dynamics during the most significant episodes of water mass formation in North West Mediterranean and South Adriatic Sea highlights that these intense physical processes have an impact on the biogeochemical properties. We verified that dense water formation changes the structure of nutrients fields and might cause precondition for chlorophyll blooms, highlighting a strong link between vertical transport mechanisms and primary productivity. The CMEMS Mediterranean Sea physical reanalysis is able to reproduce both Eastern Mediterranean Transient and Western Mediterranean Transition phenomena and catches the principal water mass formation events reported in literature. This result is promising because it allows a constant monitoring of the open ocean deep convection process in the Mediterranean Sea, a better understanding of the multiple drivers of the general overturning circulation at interannual and multidecadal time scales and the possible effects on the Mediterranean ecosystems.
    Description: Published
    Description: Vienna
    Description: 4A. Oceanografia e clima
    Keywords: deep convection ; water masses
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-13
    Description: The Mediterranean Monitoring and Forecasting Center (MED-MFC) is part of the Copernicus Marine Environment and Monitoring Service (CMEMS) and provides regular and systematic information on the time-evolving Mediterranean Sea physical (including waves) and biogeochemical state. The systems consist of 3 components: 1) Med-Physics, a numerical ocean prediction systems, based on NEMO model, that operationally produces analyses, reanalysis and short term forecasts of the main physical parameters; 2) Med-Biogeochemistry, a biogeochemical analysis, reanalysis and forecasting system based on the Biogeochemical Flux Model (BFM) which provides information on chlorophyll, phosphate, nitrate, primary productivity, oxygen, phytoplankton biomass, pH and pCO2; 3) Med-Waves based on WAM model and providing analysis, forecast and reanalysis products for waves. The systems have been recently upgraded at a resolution of 1/24 degree in the horizontal and 141 vertical levels. The Med-Physics analysis and forecasting system is composed by the hydrodynamic model NEMO 2-way coupled with the third-generation wave model WaveWatchIII and forced by ECMWF atmospheric fields. The model solutions are corrected by the 3DVAR data assimilation system (3D variational scheme adapted to the oceanic assimilation problem) with a daily assimilation cycle of sea level anomaly and vertical profiles of temperature and salinity. The model has a non-linear explicit free surface and it is forced by surface pressure, interactive heat, momentum and water fluxes at the air-sea interface. The biogeochemical analysis and forecasts are produced by means of the MedBFM v2.1 modeling system (i.e. the physical-biogeochemical OGSTM-BFM model coupled with the 3DVARBIO assimilation scheme) forced by the outputs of the Med-Physics product. Seven days of analysis/hindcast and ten days of forecast are bi-weekly produced on Wednesday and on Saturday, with the assimilation of surface chlorophyll concentration from satellite observations. In-situ data are mainly used to estimate model uncertainty at different spatial scales. The Med-Waves modelling system is based on the WAM Cycle 4.5.4 wave model code. It consists of a wave model grid covering the Mediterranean Sea at a 1/24° horizontal resolution, nested to a North Atlantic grid at a 1/6° resolution. The system is forced by ECMWF winds at 1/8°. Refraction due to surface currents is accounted by the system which assimilates altimeter along-track significant wave height observations. On a daily basis, it provides 1-day analysis and 5-day forecast hourly wave parameters. Currently, wave buoy observations of significant wave height and mean wave period along with satellite observations are used to calibrate and validate the Med-waves modelling system.
    Description: Published
    Description: Halifax, Nova Scotia, Canada
    Description: 4A. Oceanografia e clima
    Keywords: MED-MFC ; Mediterranean Monitoring and Forecasting Center
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-03
    Description: This report was written for the MyOcean Project
    Description: Published
    Description: 4.6. Oceanografia operativa per la valutazione dei rischi in aree marine
    Description: restricted
    Keywords: Architecture ; Mediterranean Sea ; Forecast ; Med-MFS Current ; 03. Hydrosphere::03.01. General::03.01.01. Analytical and numerical modeling
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-01
    Description: Here, we analyze future projections of cyclone activity in the Mediterranean region at the end of the twenty-first century based on an ensemble of state-of-the-art fully-coupled Regional Climate System Models (RCSMs) from the Med-CORDEX initiative under the Representative Concentration Pathway (RCP) 8.5. Despite some noticeable biases, all the RCSMs capture spatial patterns and cyclone activity key characteristics in the region and thus all of them can be considered as plausible representations of the future evolution of Mediterranean cyclones. In general, the RCSMs show at the end of the twenty-first century a decrease in the number and an overall weakening of cyclones moving across the Mediterranean. Five out of seven RCSMs simulate also a decrease of the mean size of the systems. Moreover, in agreement with what already observed in CMIP5 projections for the area, the models suggest an increase in the Central part of the Mediterranean region and a decrease in the South-eastern part of the region in the cyclone-related wind speed and precipitation rate. These rather two opposite tendencies observed in the precipitation should compensate and amplify, respectively, the effect of the overall reduction of the frequency of cyclones on the water budget over the Central and South-eastern part of the region. A pronounced inter-model spread among the RCSMs emerges for the projected changes in the cyclone adjusted deepening rate, seasonal cycle occurrence and associated precipitation and wind patterns over some areas of the basin such as Ionian Sea and Iberian Peninsula. The differences observed appear to be determined by the driving Global Circulation Model (GCM) and influenced by the RCSM physics and internal variability. These results point to the importance of (1) better characterizing the range of plausible futures by relying on ensembles of models that explore well the existing diversity of GCMs and RCSMs as well as the climate natural variability and (2) better understanding the driving mechanisms of the future evolution of Mediterranean cyclones properties.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-19
    Description: The Mediterranean community represented in this paper is the result of more than 30 years of EU and nationally funded coordination, which has led to key contributions in science concepts and operational initiatives. Together with the establishment of operational services, the community has coordinated with universities, research centers, research infrastructures and private companies to implement advanced multi-platform and integrated observing and forecasting systems that facilitate the advancement of operational services, scientific achievements and mission-oriented innovation. Thus, the community can respond to societal challenges and stakeholders needs, developing a variety of fit-for-purpose services such as the Copernicus Marine Service. The combination of state-of-the-art observations and forecasting provides new opportunities for downstream services in response to the needs of the heavily populated Mediterranean coastal areas and to climate change. The challenge over the next decade is to sustain ocean observations within the research community, to monitor the variability at small scales, e.g., the mesoscale/submesoscale, to resolve the sub-basin/seasonal and inter-annual variability in the circulation, and thus establish the decadal variability, understand and correct the model-associated biases and to enhance model-data integration and ensemble forecasting for uncertainty estimation. Better knowledge and understanding of the level of Mediterranean variability will enable a subsequent evaluation of the impacts and mitigation of the effect of human activities and climate change on the biodiversity and the ecosystem, which will support environmental assessments and decisions. Further challenges include extending the science-based added-value products into societal relevant downstream services and engaging with communities to build initiatives that will contribute to the 2030 Agenda and more specifically to SDG14 and the UN's Decade of Ocean Science for sustainable development, by this contributing to bridge the science-policy gap. The Mediterranean observing and forecasting capacity was built on the basis of community best practices in monitoring and modeling, and can serve as a basis for the development of an integrated global ocean observing system.
    Description: Published
    Description: Article 568
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Keywords: observing and forecasting systems, sustained observations, ocean variability, FAIR data, climate, operational services, science with and for society, SDG's
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-09-03
    Description: The MEDiterranean Monitoring and Forecasting Center (Med-MFC) is part of the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/), provided on an operational mode by Mercator Ocean in agreement with the European Commission. Specifically, Med MFC system provides regular and systematic information about the physical state of the ocean and marine ecosystems for the Mediterranean Sea. The Med-MFC service started in May 2015 from the pre-operational system developed during the MyOcean projects, consolidating the understanding of regional Mediterranean Sea dynamics, from currents to biogeochemistry to waves, interfacing with local data collection networks and guaranteeing an efficient link with other Centers in Copernicus network. The Med-MFC products include analyses, 10 days forecasts and reanalysis, describing currents, temperature, salinity, sea level and pelagic biogeochemistry. Waves products will be available in MED-MFC version in 2017. The consortium, composed of INGV (Italy), HCMR (Greece) and OGS (Italy) and coordinated by the Euro-Mediterranean Centre on Climate Change (CMCC, Italy), performs advanced R&D activities and manages the service delivery. The Med-MFC infrastructure consists of 3 Production Units (PU), for Physics, Biogechemistry and Waves, a unique Dissemination Unit (DU) and Archiving Unit (AU) and Backup Units (BU) for all principal components, guaranteeing a resilient configuration of the service and providing and efficient and robust solution for the maintenance of the service and delivery. The Med-MFC includes also an evolution plan, both in terms of research and operational activities, oriented to increase the spatial resolution of products, to start wave products dissemination, to increase temporal extent of the reanalysis products and improving ocean physical modeling for delivering new products. The scientific activities carried out in 2015 concerned some improvements in the physical, biogeochemical and wave components of the system. Regarding the currents, new grid-point EOFs have been implemented in the Med-MFC assimilation system; the climatological CMAP precipitation was replaced by the ECMWF daily precipitation; reanalysis time-series have been increased by one year. Regarding the biogeochemistry, the main scientific achievement is related to the implementation of the carbon system in the Med-MFC biogeochemistry model system already available. The new model is able to reproduce the principal spatial patterns of the carbonate system variables in the Mediterranean Sea. Further, a key result consists of the calibration of the new variables (DIC and alkalinity), which serves to the estimation of the accuracy of the new products to be released in the next version of the system (i.e. pH and pCO2 at surface). Regarding the waves, the system has been validated against in-situ and satellite observations. For example, a very good agreement between model output and in-situ observations has been obtained at offshore and/or well-exposed wave buoys in the Mediterranean Sea.
    Description: Published
    Description: Vienna
    Description: 3SR. AMBIENTE - Servizi e ricerca per la Società
    Keywords: Mediterranean monitoring and forecasting operational system ; Copernicus Marine Environment Monitoring Service
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-12-23
    Description: Si listano le singole sezioni in cui S.Simoncelli ha contribuito. Ogni sezione puo' essere citata separatamente dal report 1.1 Ocean temperature and salinity S. Mulet, B. Buongiorno Nardelli, S. Good, A. Pisano, E. Greiner, M. Monier E. Autret, L. Axell, F. Boberg, S. Ciliberti, M. Drévillon, R. Droghei, O. Embury, J. Gourrion, J. Høyer, M. Juza, J. Kennedy, B. Lemieux-Dudon, E. Peneva, R. Reid, S. Simoncelli, A. Storto, J. Tinker, K. von Schuckmann, S. L. Wakelin. 2.1. Ocean heat content ..K. von Schuckmann, A. Storto, S. Simoncelli, R. P. Raj, A.Samuelsen, A. de Pascual Collar, M. Garcia Sotillo, T Szerkely, M. Mayer, K. A. Peterson, H. Zuo, G. Garric, M. Monier. 3.4 Water mass formation processes in the Mediterranean Sea over the past 30 years S. Simoncelli, Nadia Pinardi, C. Fratianni, C. Dubois, G. Notarstefano. 3.5 Ventilation of the Western Mediterranean Deep Water through the Strait of Gibraltar S. Sammartino, J. García Lafuente, C. Naranjo, S. Simoncelli. 4.4 Unusual salinity pattern in the South Adriatic Sea in 2016 Z. Kokkini, G. Notarstefano P-M Poulain, E. Mauri, R. Gerin, S. Simoncelli
    Description: The oceans regulate our weather and climate from global to regional scales. They absorb over 90% of accumulated heat in the climate system (IPCC 2013 IPCC. 2013. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM, editors]. Cambridge: Cambridge University Press, 1535. doi: 10.1017/CBO9781107415324. [Crossref], , [Google Scholar]) and over a quarter of the anthropogenic carbon dioxide (Le Quéré et al. 2016 Le Quéré C, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, Peters GP, Manning AC, Boden TA, Tans PP, Houghton RA, et al. 2016. Global carbon budget 2016. Earth Syst Sci Data. 8( 2): 605– 649. doi: 10.5194/essd-8-605-2016 [Crossref], [Web of Science ®], , [Google Scholar]). They provide nearly half of the world’s oxygen. Most of our rain and drinking water is ultimately regulated by the sea. The oceans provide food and energy and are an important source of the planet's biodiversity and ecosystem services. They are vital conduits for trade and transportation and many economic activities depend on them (OECD 2016 OECD . 2016. The ocean economy in 2030. Paris : OECD Publishing. doi: 10.1787/9789264251724-en. [Crossref], , [Google Scholar]). Our oceans are, however, under threat due to climate change and other human induced activities and it is vital to develop much better, sustainable and science-based reporting and management approaches (UN 2017 UN . 2017. Report of the United Nations conference to support the implementation of sustainable development goal 14: Conserve and sustainably use the oceans, seas and marine resources for sustainable development (Advance unedited version). https://sustainabledevelopment.un.org/content/documents/15662FINAL_15_June_2017_RepoRe_Goal_14.pdf . [Google Scholar]). Better management of our oceans requires long-term, continuous and state-of-the art monitoring of the oceans from physics to ecosystems and global to local scales. The Copernicus Marine Environment Monitoring Service (CMEMS) has been set up to address these challenges at European level. Mercator Ocean was tasked in 2014 by the European Union under a delegation agreement to implement the operational phase of the service from 2015 to 2021 (CMEMS 2014 CMEMS . 2014. Technical annex to the delegation agreement with Mercator Ocean for the implementation of the Copernicus Marine Environment Monitoring Service (CMEMS). www.copernicus.eu/sites/default/files/library/CMEM_TechnicalAnnex_PUBLIC.docx.pdf . [Google Scholar]). The CMEMS now provides regular and systematic reference information on the physical state, variability and dynamics of the ocean, ice and marine ecosystems for the global ocean and the European regional seas (Figure 0.1; CMEMS 2016 CMEMS . 2016. High level service evolution strategy, a document prepared by Mercator Ocean with the support of the CMEMS STAC. [Google Scholar]). This capacity encompasses the description of the current situation (analysis), the prediction of the situation 10 days ahead (forecast), and the provision of consistent retrospective data records for recent years (reprocessing and reanalysis). CMEMS provides a sustainable response to European user needs in four areas of benefits: (i) maritime safety, (ii) marine resources, (iii) coastal and marine environment and (iv) weather, seasonal forecast and climate.
    Description: Copernicus Marine Environment Monitoring Service
    Description: Published
    Description: S1-S142
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-01
    Description: The Mediterranean Forecasting System produces operational analyses and reanalyses and 10 d forecasts for many essential ocean variables (EOVs), from currents, temperature, salinity, and sea level to wind waves and pelagic biogeochemistry. The products are available at a horizontal resolution of 1/24 (approximately 4 km) and with 141 unevenly spaced vertical levels. The core of the Mediterranean Forecasting System is constituted by the physical (PHY), the biogeochemical (BIO), and the wave (WAV) components, consisting of both numerical models and data assimilation modules. The three components together constitute the so-called Mediterranean Monitoring and Forecasting Center (Med-MFC) of the Copernicus Marine Service. Daily 10 d forecasts and analyses are produced by the PHY, BIO, and WAV operational systems, while reanalyses are produced every 3 years for the past 30 years and are extended (yearly). The modelling systems, their coupling strategy, and their evolutions are illustrated in detail. For the first time, the quality of the products is documented in terms of skill metrics evaluated over a common 3-year period (2018–2020), giving the first complete assessment of uncertainties for all the Mediterranean environmental variable analyses.
    Description: Published
    Description: 1483–1516
    Description: OSA4: Ambiente marino, fascia costiera ed Oceanografia operativa
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...