GLORIA

GEOMAR Library Ocean Research Information Access

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Document type
Keywords
Years
  • 1
    Publication Date: 2018-03-14
    Description: This paper documents the migration of the Polar Front (PF) over the Iberian margin during some of the cold climatic extremes of the last 45 ka. It is based on a compilation of robust and coherent paleohydrological proxies obtained from eleven cores distributed between 36 and 42°N. Planktonic δ18O (Globigerina bulloides), ice-rafted detritus concentrations, and the relative abundance of the polar foraminifera Neogloboquadrina pachyderma sinistral were used to track the PF position. These three data sets, compared from core to core, show a consistent evolution of the sea surface paleohydrology along the Iberian margin over the last 45 ka. We focused on five time slices representative of cold periods under distinct paleoenvironmental forcings: the 8.2 ka event and the Younger Dryas (two recent cold events occurring within high values of summer insolation), Heinrich events 1 and 4 (reflecting major episodes of massive iceberg discharges into the North Atlantic), and the Last Glacial Maximum (typifying the highest ice volume accumulated in the Northern Hemisphere). For each event, we generated schematic maps mirroring past sea surface hydrological conditions. The maps revealed that the Polar Front presence along the Iberian margin was restricted to Heinrich events. The sea surface conditions during the Last Glacial Maximum were close to those at present day, except for the northern sites which briefly experienced subarctic conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-07-01
    Description: The Last Interglacial climatic optimum, ca. 128 ka, is the most recent climate interval significantly warmer than present, providing an analogue (albeit imperfect) for ongoing global warming and the effects of Greenland Ice Sheet (GIS) melting on climate over the coming millennium. While some climate models predict an Atlantic meridional overturning circulation (AMOC) strengthening in response to GIS melting, others simulate weakening, leading to cooling in Europe. Here, we present evidence from new proxy-based paleoclimate and ocean circulation reconstructions that show that the strongest warming in western Europe coincided with maximum GIS meltwater runoff and a weaker AMOC early in the Last Interglacial. By performing a series of climate model sensitivity experiments, including enhanced GIS melting, we were able to simulate this configuration of the Last Interglacial climate system and infer information on AMOC slowdown and related climate effects. These experiments suggest that GIS melt inhibited deep convection off the southern coast of Greenland, cooling local climate and reducing AMOC by ∼24% of its present strength. However, GIS melt did not perturb overturning in the Nordic Seas, leaving heat transport to, and thereby temperatures in, Europe unaffected.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-11-27
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Quaternary Science Reviews 125 (2015): 50-60, doi:10.1016/j.quascirev.2015.06.009.
    Description: In contrast to the East Asian and African monsoons the Indian monsoon is still poorly documented throughout the last climatic cycle (last 135,000 years). Pollen analysis from two marine sediment cores (NGHP-01-16A and NGHP-01-19B) collected from the offshore Godavari and Mahanadi basins, both located in the Core Monsoon Zone (CMZ) reveals changes in Indian summer monsoon variability and intensity during three contrasting climatic periods: the Holocene, the Heinrich Stadial (HS) 2 and the Marine Isotopic Stage (MIS) 5/4 during the ice sheet growth transition. During the first part of the Holocene between 11,300 and 4,200 cal years BP, characterized by high insolation (minimum precession, maximum obliquity), the maximum extension of the coastal forest and mangrove reflects high monsoon rainfall. This climatic regime contrasts with that of the second phase of the Holocene, from 4,200 cal years BP to the present, marked by the development of drier vegetation in a context of low insolation (maximum precession, minimum obliquity). The historical period in India is characterized by an alternation of strong and weak monsoon centennial phases that may reflect the Medieval Climate Anomaly and the Little Ice Age, respectively. During the HS 2, a period of low insolation and extensive iceberg discharge in the North Atlantic Ocean, vegetation was dominated by grassland and dry flora indicating pronounced aridity as the result of a weak Indian summer monsoon. The MIS 5/4 glaciation, also associated with low insolation but moderate freshwater fluxes, was characterized by a weaker reduction of the Indian summer monsoon and a decrease of seasonal contrast as recorded by the expansion of dry vegetation and the development of Artemisia, respectively. Our results support model predictions suggesting that insolation changes control the long term trend of the Indian monsoon precipitation, but its millennial scale variability and intensity are instead modulated by atmospheric teleconnections to remote phenomena in the North Atlantic, Eurasia or the Indian Ocean.
    Description: The work of C.Z. was supported by the ANR MONOPOL.
    Keywords: Indian summer monsoon ; Core Monsoon Zone ; Pollen assemblage ; Holocene ; Heinrich Stadial 2 ; Last interglacial-glacial transition
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/msword
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-13
    Description: Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Climate of the Past 5 (2009): 53-72, doi:10.5194/cp-5-53-2009
    Description: We present a new high-resolution marine pollen record from NW Iberian margin sediments (core MD03-2697) covering the interval between 340 000 and 270 000 years ago, a time period centred on Marine Isotope Stage (MIS) 9 and characterized by particular baseline climate states. This study enables the documentation of vegetation changes in the north-western Iberian Peninsula and therefore the terrestrial climatic variability at orbital and in particular at millennial scales during MIS 9, directly on a marine stratigraphy. Suborbital vegetation changes in NW Iberia in response to cool/cold events are detected throughout the studied interval even during MIS 9e ice volume minimum. However, they appear more frequent and of higher amplitude during the 30 000 years following the MIS 9e interglacial period and during the MIS 9a-8 transition, which correspond to intervals of an intermediate to high ice volume and mainly periods of ice growth. Each suborbital cold event detected in NW Iberia has a counterpart in the Southern Iberian margin SST record. High to moderate amplitude cold episodes detected on land and in the ocean appear to be related to changes in deep water circulation and probably to iceberg discharges at least during MIS 9d, the mid-MIS 9c cold event and MIS 9b. This work provides therefore additional evidence of pervasive millennial-scale climatic variability in the North Atlantic borderlands throughout past climatic cycles of the Late Pleistocene, regardless of glacial state. However, ice volume might have an indirect influence on the amplitude of the millennial climatic changes in Southern Europe.
    Description: This research was supported by IPEV (Institut Paul Emile Victor), PNEDC (Programme National d’Etude de la Dynamique du Climat), the Gary Comer Science and Education Foundation and the US National Science Foundation (OCE grants 8-4911100 and 8-256500).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Waelbroeck, C., Lougheed, B. C., Riveiros, N. V., Missiaen, L., Pedro, J., Dokken, T., Hajdas, I., Wacker, L., Abbott, P., Dumoulin, J., Thil, F., Eynaud, F., Rossignol, L., Fersi, W., Albuquerque, A. L., Arz, H., Austin, W. E. N., Came, R., Carlson, A. E., Collins, J. A., Dennielou, B., Desprat, S., Dickson, A., Elliot, M., Farmer, C., Giraudeau, J., Gottschalk, J., Henderiks, J., Hughen, K., Jung, S., Knutz, P., Lebreiro, S., Lund, D. C., Lynch-Stieglitz, J., Malaize, B., Marchitto, T., Martinez-Mendez, G., Mollenhauer, G., Naughton, F., Nave, S., Nuernberg, D., Oppo, D., Peck, V., Peeters, F. J. C., Penaud, A., Portilho-Ramos, R. d. C., Repschlaeger, J., Roberts, J., Ruehlemann, C., Salgueiro, E., Goni, M. F. S., Schonfeld, J., Scussolini, P., Skinner, L. C., Skonieczny, C., Thornalley, D., Toucanne, S., Van Rooij, D., Vidal, L., Voelker, A. H. L., Wary, M., Weldeab, S., & Ziegler, M. Consistently dated Atlantic sediment cores over the last 40 thousand years. Scientific Data, 6, (2019): 165, doi:10.1038/s41597-019-0173-8.
    Description: Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies.
    Description: The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013 Grant agreement n° 339108). New 14C dates for cores EW9209-1JPC and V29-202 were funded by NSF OCE grants to DWO. FN, ES and AV acknowledge FCT funding support through project UID/Multi/04326/2019. We thank T. Garlan and P. Guyomard for having given us access to cores from the Service Hydrographique et Océanographique de la Marine. We acknowledge N. Smialkowski for help with formatting the data into text files, and L. Mauclair, L. Leroy and G. Isguder for the picking of numerous foraminifer samples for radiocarbon dating. We are grateful to S. Obrochta, E. Cortijo, E. Michel, F. Bassinot, J.C. Duplessy, and L. Labeyrie for advice and fruitful discussions. This paper is LSCE contribution 6572.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    PANGAEA
    In:  European Pollen Database (EPD)
    Publication Date: 2023-02-23
    Keywords: Age, dated; Age, dated, error to older; Age, dated, error to younger; Age, radiocarbon; Core1; DEPTH, sediment/rock; Etang dOuveillan, France; OUVEIL2; Thickness
    Type: Dataset
    Format: text/tab-separated-values, 12 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-05-12
    Keywords: AGE; CALYPSO; Calypso Corer; Counting 〉150 µm fraction; DEPTH, sediment/rock; GEOSCIENCES, MARMARCORE; IMAGES; International Marine Global Change Study; Marion Dufresne (1995); MD01-2444; MD123; Neogloboquadrina pachyderma sinistral
    Type: Dataset
    Format: text/tab-separated-values, 50 data points
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...